
74     LXF260 March 2020 www.linuxformat.com

TUTORIALS Docker containers

With Ubuntu Server installed we are now ready to
install Docker, and there are a number of ways to do
this. The Ubuntu repositories include a version of
Docker called docker.io; however it is quite old. While
containers themselves are not a new concept, Docker is
a young platform, so we’ll use the official Docker
repository for the Community Edition (docker-ce). The
team at Docker maintain a full installation guide for
Ubuntu at https://docs.docker.com/install/linux/
docker-ce/ubuntu, but we will run through only the
necessary steps for a fresh install of Ubuntu 18.04.

We will start by updating our repository files, and
then adding the Docker repository GPG key with the
following commands:
sudo apt-get update
curl -fsSL https://download.docker.com/linux/ubuntu/
gpg | sudo apt-key add -

We can now add the Docker repository to our
installation with:
sudo add-apt-repository \
 “deb [arch=amd64] https://download.docker.com/
linux/ubuntu \
 $(lsb_release -cs) \
 stable”

Finally, install the various Docker components needed
using the following command:
sudo apt-get -y install docker-ce docker-ce-cli
containerd.io docker-compose

We should now have a working Docker installation,
including all of the necessary back-end services as well
as the command line tools to launch containers. To
make life easier later in the tutorial we should add our
username into the docker group, which will save us from
having to remember to prefix every command with
sudo. To do this, run the command:
sudo usermod -a -G docker $USER
Log out and back into the console/ssh session.

e’re going to demystify and make Docker easy
to use, explaining how to run it and expose
services to the internet. For our case study we

will use Nextcloud and a fresh installation of Ubuntu
Server 18.04. The goal here is not to demonstrate a
‘better’ way of running Nextcloud, but rather how to
use the Docker platform.

Docker is probably the best-known container system
for Linux, although it is far from the only one. Containers
allow developers to build all the necessary libraries,
services and configuration files into a predefined
package that can be recreated on-demand. They solve
an age-old problem where applications work fine in
development but not when they’re moved into
production due to various dependencies, such as OS
version, libraries, etc. This may sound similar to
virtualisation (VirtualBox, VMware, etc.), but containers
do not emulate hardware and even use the host server’s
OS kernel – see the boxout (opposite page) for more.

Get docked
We’re going to use a virtual machine (any flavour will do,
VirtualBox will work fine) on which to install Ubuntu
Server 18.04. Feel free to add Docker onto an existing
Linux installation too, but you may need to change
some of the settings we apply later. During the
installation of Ubuntu Server accept all the default
settings, and the only optional package that may be
useful is the SSH server (this tutorial assumes that the
username defined during installation is ‘tutorial’).

‘docker ps’ lists all running containers on your docker host. If you want
to see stopped containers too make sure you add the ‘-a’ flag.

The hello-world
container image is
very useful to test

that your Docker
installation
is working.

Nextcloud and Docker
containers made easy
With the help of Chris Notley we set sail on a voyage of discovery to install
Docker and use it to build a working instance of Nextcloud.

Chris Notley
runs a technology
consultancy in
Surrey with an
interest in open
source software.

W

DOCKER

OUR
EXPERT

If you want to
shortcut the
installation
process for
Docker, cheat.
sh is available
in the project
archive at
https://github.
com/prel-im/
lxf260. If you
place the file
in your home
directory and
execute via
‘bash cheat.
sh $USER’, it
will run all the
commands to
install Docker
Server on
Ubuntu 18.04.

Credit: https://docs.docker.com
Part One!
Don’t miss
next issue,

subscribe on
page 24!

March 2020 LXF260     75www.techradar.com/pro/linux

Docker containers TUTORIALS

Docker Compose
allows you to start
and stop a number
of containers with
a single command
while also ensuring
consistency.

Nextcloud and Docker
containers made easy

 CONTAINERS VS HYPERVISORS

Creating containers
We can now test our installation is working correctly by
using the Docker ‘hello-world’ container image via the
command docker run hello-world. This container is not
very exciting – all it does is display a confirmation
message to show that Docker is running correctly.

Let’s take a quick look at the command we have just
run to understand what it does. The docker command
provides a way to interact with the container engine
running on our Docker host and allows us to launch and
manage containers. We used the run option here to
create and launch a new container using the image
name ‘hello-world’ (a test image provided by the team at
Docker Inc.). As we will see when we run the command
on the Docker host, the first thing that happens is that
our Docker installation cannot find that image locally, so
it searches for the name on Docker Hub (see the boxout
for more on Docker Hub). It then downloads the image
to our server and launches a container using it.

Now let’s look at some of the other Docker command
line options, starting with docker ps, which shows the
status of all running containers. If we run this command
immediately after executing the hello-world example,
it’s surprising to see that nothing is listed at all. The
reason for this is that when the hello-world container
ran, it simply displayed the welcome message and then
exited, so the container is no longer running. We can see
all containers (running or not) with the command
docker ps -a, which should show the stopped hello-
world container. This command shows the ID of each
container in the first column (this is a unique reference
on each Docker installation – for this tutorial the ID was
8600d8c3a86a) along with information such as the
image used to create the container, along with the
current status and more.

We can delete a container as long as it is not running
using the docker rm command. As our hello-world
container is already stopped, we can delete it using the
command docker rm 8600d8c3a86a (replace the ID
with the value shown in your system when running the
docker ps -a command).

So far we have created and listed containers as well
as deleting them. However, we have seen only a small
subset of the capabilities of Docker. We’ll now move on
to installing Nextcloud, and the first decision we need
to make is what container image to use. For this tutorial
we will use the excellent images from the team at
www.linuxserver.io. Their website provides a list of the
images they maintain at https://fleet.linuxserver.io/
with a link to Docker Hub showing documentation for
each image in turn.

We are going to use Docker bind mounts in this
tutorial – see the boxout (right) for more information –
and to prepare for this we will create some directories
inside our home, using the following commands:
mkdir -p ~/nextcloud/{config,data}
mkdir -p ~/mariadb/config

With the directories made, manually create a new
Docker container using the docker create command.
Unlike the docker run command we used earlier, this
command defines the container but does not launch it,
and we can use the following command to do so:
docker create \
 --name=nextcloud \

 -e PUID=1000 \
 -e PGID=1000 \
 -e TZ=Europe/London \
 -p 443:443 \
 -v ~/nextcloud/config:/config \
 -v ~/nextcloud/data:/data \
 --restart unless-stopped \
 linuxserver/nextcloud

Breaking down the command above, the first
option gives the container a friendly name (this saves
us from having to use the container ID and needs to
be unique on your system). The next three lines define
environmental variables that control the user and group
IDs under which the container will run, as well as our
time zone.

The next option is new in this tutorial and tells
Docker to direct traffic destined to TCP port 443 on the
host to this container – a bit like setting a port
forwarding entry on a broadband router.

The next two lines tell Docker to mount the two
directories we created earlier to /config and /data
respectively, inside our new container, while the
penultimate option tells Docker to restart the container

Virtualisation is another way to separate applications or services –
such as enabling you to easily run separate instances of applications
on one physical PC. A virtual PC (whether you use VirtualBox, VMware
or any other version) emulates a full hardware stack, so every virtual
instance needs a full OS installation. While you can simplify this
process by copying an existing virtual machine, you cannot avoid the
inevitable duplication of system files. Enterprise versions often
provide tools to streamline this process, but they come at a cost.

The biggest difference is that most container platforms (including
Docker as used in this tutorial) provide tools to bring your container
into a known state, be that versions of libraries, configuration files or
exposed network ports. In contrast, with a virtual machine you need
to install the OS, install packages, copy configuration files, etc. (either
manually or using a tool such as Ansible or SaltStack). Another
significant advantage is volume mapping, which allows us to map a
directory on our container (for example /etc/resolv.conf) to a file
contained on our host file system. This feature is not only restricted to
individual files, but also whole directories.

Despite this containers are not the solution to every requirement –
they tend to work best when you can break a service into multiple
small pieces (e.g. web database, etc.) and coordinate them via
something like Docker Compose. The industry buzzword for this
approach is using micro-services.

76     LXF260 March 2020 www.linuxformat.com

TUTORIALS Docker containers

 docker create --name=nextcloud -e PUID=1000
recreates the container as before

The above process is not particularly onerous with a
single container, but if our use of Docker grows and we
maintain several containers, then repeating this process
for every container is going to be both monotonous and
prone to errors. In addition, if we need to move
containers to a new host (for instance, we test them
on a laptop and then want to move them to a server),
we would need to keep a record of every setting we
used to create the containers.

DOCKER COMPOSE
Enter docker-compose, an orchestration tool that can
help us manage our containers and greatly simplify
activities such as upgrading, changing settings and
moving containers. The tool enables multiple services to
be defined as well as the dependencies between them,
and relies on a single configuration file (in YAML format).

We will dive straight in and redefine our Nextcloud
service this way, but to start with we need to remove the
instance we created earlier using the following:
docker stop nextcloud
docker rm nextcloud

We’ll now create a file named docker-compose.yml
in our home directory and paste the following content in
(spacing is important, and each indentation level below
is made up of two spaces):
version: “2”
services:
 nextcloud:
 image: linuxserver/nextcloud
 container_name: nextcloud
 environment:
 - PUID=1000
 - PGID=1000
 - TZ=Europe/London
 volumes:
 - ~/nextcloud/config:/config
 - ~/nextcloud/data:/data

unless we explicitly tell it to stop. And finally, we specify
the name of the container image we wish to use on
Docker Hub.

When we run the above command, the first thing
that happens is that the Docker installation will realise it
does not hold a local copy of the image and so will
download and extract it (as an aside here, at the time of
writing the size of the linuxserver/nextcloud image was
133MB, not bad when compared to the size of a virtual
disk file) and will then return the full container ID when
finished. We can now start our new container using the
command docker start nextcloud, and we can test it
easily enough by opening a web browser and pointing it
at the IP address of our Docker host (remember to use
https://). After ignoring the security error (the
container uses a self-signed certificate that won’t be
trusted by your browser) we should see the Nextcloud
setup wizard.

We now have a working instance of Nextcloud
running in Docker created using a single (albeit multi-
line) command, and we can start and stop it using a
simple command line tool. This container has just the
services and libraries needed to run the application
(hence why it is only 133MB in size), but it uses the
Linux kernel of our Docker host.

Creating containers this way is great when we want
to test out a new application or service. However, if we
want to run a service permanently, there are some big
disadvantages to using docker create. While it is
possible to inspect an existing container and determine
settings like port forwarding and volume mounts, there
is no record kept of the docker create options we used
to create the container (the only exception here is if it’s
in the bash_history file).

This disadvantage becomes more obvious when
we consider how we go about updating an existing
container when there is an update to the image, which
is the following:

 docker pull linuxserver/nextcloud updates the
container image

 docker stop nextcloud stops the existing container
 docker rm nextcloud removes the existing container

 DOCKER HUB
While Docker is not the only container solution out there, it’s definitely
one of the better-known ones. Anyone can create a Docker image
from scratch, but the learning curve is quite steep, so being able to
start with an existing container can make a big difference as we start
to work with it. Docker provides a central repository of images called
Docker Hub, and this is accessible to everyone immediately after
Docker is installed – we don’t need to register or create API keys, we
can pull an image just by referencing its name.

Docker Hub contains both official images created by the team
at Docker Inc. as well as a vast array of images created by the
community. One such community team are the guys at www.
linuxserver.io who maintain a significant library of images on Docker
Hub (100 at the time this tutorial was written). A full list of all their
images can be found at https://fleet.linuxserver.io with each image
linking to a full documentation page at Docker Hub.

There are many other community teams and individual developers
who have contributed images to Docker Hub, and the chances are
very high that you will find an image for your requirement.

Complete the Nextcloud setup wizard in your browser and use the
database values defined in our docker-compose.yml file.

March 2020 LXF260     77www.techradar.com/pro/linux

Docker containers TUTORIALS

 ports:
 - 443:443
 restart: unless-stopped

While the above format is slightly different from the
docker create command, the settings are the same.

With the file created we can create and launch our
container using a single command: docker-compose up
-d (the -d flag tells the compose command to start the
containers in detached mode – ie running in the
background). The command will create a new network
and then create and start the Nextcloud container
for us. We can check it is running correctly using the
‘docker ps’ command we ran earlier and should see
the new Nextcloud container running.

With Nextcloud defined, let’s now add an additional
container to run MariaDB (we would normally run
Nextcloud with either MariaDB/MySQL or PostgreSQL).
To add an extra container we need to define an
additional service in our docker-compose.yml file. We
can paste the content below into that file (note that the
spacing is important and the first line must have two
spaces in front of it):
 mariadb:
 image: linuxserver/mariadb
 container_name: mariadb
 environment:
 - PUID=1000
 - PGID=1000
 - MYSQL_ROOT_PASSWORD=ChangeMePlease
 - TZ=Europe/London
 - MYSQL_DATABASE=nextcloud
 - MYSQL_USER=nextcloud
 - MYSQL_PASSWORD=ChangeMeAlso
 volumes:
 - ~/mariadb/config:/config
 ports:
 - 3306:3306
 restart: unless-stopped

Again we are using an image supplied by the team at
www.linuxserver.io, and while the content above looks
slightly different to the earlier example, it is still broken
into the same sections.

For this image we can define both the root password
and create an application-specific database at the point
the image is created, all of which is controlled using
environmental variables. This is extremely powerful,
because the new container will start and already have

the database, username and also the password defined
in one go.

With our new service defined, we can launch it using
the same command as before (docker-compose up -d).
This time, as we are using a new image for the first time,
we will see compose pull down a copy of the latest
MariaDB image from Docker Hub and then create and
start our container. If you encounter any problems at
this point it will probably be due to incorrect spacing/
indentation of the docker-compose.yml file. You can
pull down a complete version of the file from https://
github.com/prel-im/lxf260/blob/master/docker-
compose.yml.

We should now have two containers running on our
Docker host: nextcloud and mariadb. We can now
complete the Nextcloud setup wizard by pointing a web
browser at the IP address of our Docker host
(remember to prefix with https://) and complete the
MySQL/MariaDB entries using the values defined in our
docker-compose.yml file (change the Database host
value from localhost to mariadb – this is a neat feature
whereby containers can resolve each other by name).

One of the consequences of a container approach is
that updates tend to be delivered quite quickly in small
batches, so we’ll now take a look at how to upgrade
containers (when managed by docker-compose).
We can do so by running the following commands
(assuming you are in your home directory):
docker-compose pull
docker-compose up -d

The above commands will pull down any updates to
images defined in the container files and then remove
and recreate any container for which an upgraded
image is available (containers with no updates will not
be interrupted). Compared with the earlier example for
manually created containers (four steps for each
container) we can see that there is substantial scope to
reduce the effort involved in managing even a small
estate of Docker containers.

For now we are done. In a future edtion of this tutorial
we shall look at Traefik, a reverse proxy that can
automatically discover services on your Docker host.

 CONTAIN YOUR EXCITEMENT Subscribe now at http://bit.ly/LinuxFormat

Docker allows
you to map TCP
or UDP ports in
your containers
through to your
host. You cannot
map a container
to a port on
your host that is
already listening
(e.g. if you run
a SSH server on
the host, you
cannot map
TCP/22 to a
container).

We’re done,
Nextcloud and
MariaDB are
running in Docker,
and with the
wizard completed
Nextcloud is
working and
ready for use!

Updating containers is a breeze with Docker Compose, with only two
commands required, whether you are managing 2 or 10 containers.

