
40 LXF209 April 2016 www.linuxformat.com

Jonni Bidwell learns all about
Mozilla’s recently released language
with veteran Rustafarian Jim Blandy.

Diamonds
and Rust

LXF209.iview.indd 40 26/02/2016 12:11

Jim Blandy

April 2016 LXF209 41www.techradar.com/pro

 Jim Blandy (aka jimb)
cut his teeth working
on Emacs, The GNU
Project Debugger
(gdb) and various
other bits of the GNU
Project. He’s a
founder of Red Bean,

a company set up to never to make any
money, but also to never go away. These
days he’s a software developer at Mozilla,
and an ardent Rust proponent. We caught
up with him at OSCON to learn all about
the new language, as well as the
idiosyncrasies of the old ones. Plus the
various challenges of teaching a new
generation of rustaceans.

Linux Format: So Rust 1.0 (this interview
took place in July 2015) has just been
released. I have a sort of pointed question to
begin with: All these new program languages
from major players – Go, Swift, Rust – why
do we need them?
 Jim Blandy : That’s a great question. Especially
when you’re learning programming languages
and once you get enough experience you realise
that, for the most part, they’re all pretty much
the same. Then once you’ve got the gist of one
you can pick up another pretty quickly. That’s
why languages like Haskell are a real joy
because they’re definitely not easy to learn.
Prolog’s a good one too, because you can run
your programs backwards.

LXF: Even as a mathematician I don’t really
believe functional programming works. I still
don’t understand monads.
JB: They’re just monoids in the category of
endofunctors.

LXF: Thanks, that really clears that up. Let’s
go back to Rust.
JB: The defining characteristics of C and C++
are their attitude towards undefined behaviour.
In a language like Python, if you reference an
element off the end of an array, it throws an
exception. That exception is described in the
documentation, it says that that’s what
happens. So even when you do bad things,
the language specifies what the response is.

JavaScript is much the same. In a sense,
those languages try to be total: every program
that you could possibly give them has some
meaning – it might not be useful, it might just
be throwing an error – but everything has
meaning. In C and C++, what they say is “Well

there’s some errors that we can detect
efficiently or at compile time and we’ll tell you
about those. But basically everything that would
cost us even the smallest amount of overhead
to detect is up to you to avoid.” In fact, if your
program does any of these undefined things the
compiler is within its rights to produce a
program that does anything at all. So the demo
that I opened up my talk with is a simple three-
line C program that declares an array and one
element, assigns a value to its third element
(which it doesn’t have) and it returns. When you
run this it displays a weird error message saying
that your password is exposed and things like
that. What’s happened is that the program has
overwritten the return address for main() so
when main() returns it dumps into some poor
little C library and
it just falls apart.

LXF: And that’s
not due to any
bug in the
compiler or
anything?
JB: Nope. This is
completely legitimate behaviour according to C
and C++; basically their attitude is that it’s the
programmer’s responsibility to avoid undefined
behaviour. We now have 30 years of history
testifying how well that works out. In 1988, the
Morris virus exploited a buffer overrun to break
into people’s computers through the finger
protocol. Since then, there’s been a steady flow
of those kinds of exploits. If you look at the
open-source vulnerability database they have a
little chart up there and it’s a consistent 10%.
These days we have SQL injections and PHP,
so there’s a lot of competition, but they just
keep coming and it’s not a surprise: The jury is

in, the experiment has been run, humans can’t
write that code, they can’t be trusted.

The Google security blog had a post recently
about some integer-size based vulnerabilities.
Even the innocent things like ‘Well, I’m just
gonna cast this 32-bit integer into a 16-bit
integer, I don’t wanna waste time just take the
bottom 16 bits, I know what I’m doing’. You
don’t. Or rather, you might, but the frequency
with which you don’t is often enough that we
power the Russian mafia. It’s bad.

So what we’ve got is the situation where the
systems programming languages can be
trusted with low-level stuff, kernels, crypto and
implementing VMs for other languages.
All those systems languages are unsafe, it’s up
to you to do this thing that humans can’t do.

Basically every other language is well-
defined: Python, JavaScript, Haskell, Ruby and
everything else tries to be complete. So there’s
this weird dichotomy where the languages we
trust with all kinds of untrusted data are the
ones where it’s a sword dance on an ice skating
rink. Rust exists to bridge that chasm. It’s a
systems programming language where it tells
you when you break the rules. In Rust, when I
declare a structure with two 32-bit integers, that
is a 64-bit value with nothing else. It’s just those
two words, there’s no metadata or dynamic
anything, it’s just a simple data structure.
We have implemented a garbage collector for

 On 30 yeaRs Of BuffeR OVeRfLOWs

“ The jury is in, the experiment
has been run, humans can’t
write that code… ”

Diamonds
and Rust

Interview

LXF209.iview.indd 41 26/02/2016 12:11

Jim Blandy

42 LXF209 April 2016 www.linuxformat.com

Servo (a project to port Firefox to Rust), but
that’s not part of the language itself. When you
write a Rust program you know exactly when
each value gets freed, you don’t have to wait for
a garbage collector to know when it’s gone.

So the storage management is very
deterministic and easy to control, data
representations are simple and direct – they’re
just exactly what the machine needs to do to
represent those values, and operations that
look cheap in the code are cheap. In C++ when
you do an assignment, if that assignment
happens to be a vector, that’s copying that
vector over to the destination. And if that vector
happens to be a vector of strings, it’s copying
each string. So you can end up accidentally
writing code that is incredibly inefficient, it’s
allocating vast amounts of memory. This isn’t
usually a problem, but it’s not a characteristic
you’d like in a systems programming language
whose whole selling point is that it gives you
control over the machine.

LXF: What is it that Rust does differently?
JB: Rust takes a different approach to those
things. It uses moves for big expensive values:
assignment will move a value from the source

to the destination and then leave the source
de-initialised. The consequence of that is when
you have a big structure like a vector or a hash
table, at any given time that value has exactly
one owner. You can pass it to a function and
then maybe the function takes ownership of it,
but you the caller have lost access to it – you
moved the owner, but there is only ever one.
You could take that big value and store it in
another table, now that other table owns it and
again you’ve lost access to it. Having only one
owner makes it very clear when that value is
going to go away. That’s basically Rust’s storage
management story.

Of course, it’s very restrictive to have only
one owner, there’s a reason why people write
ownership-ambiguous programs the way they
do. So Rust has a thing called borrowed
pointers, which means that you’re using
something for a little while, but you’re going to
give it back to its owner eventually. A borrowed
pointer gives you access to a value without
changing its ownership. You can compute on it
or modify it, but you have to give up your
borrowed references to it in a way that the
compiler can tell that you’re doing it. The
compiler has to be able to see that all of your

borrows end at a well-
defined time. So there’s
two kinds of borrows,
you can have shared
references, you can have
millions of those ones,
you can hand them out
to everyone so long as
they all come back—they
all have to expire. Or you
can have a mutable
borrow, you’re only
allowed one of these, it’s
a multiple reader single
writer pattern. If you
have a mutable borrow
then that’s the only thing
that can access that
item at all, you can’t even
call it by its original
variable name. The
mutable borrow is now
the sole point of access
to the underlying object.

By strictly segregating
access that can be
shared from access that
can mutate, Rust can
actually prove at compile
time that you never have
share and mutation at
the same time. If you
read the Java spec and
look at the hash table
interface, there is a rule
that says if you are

iterating over a hash table, the only thing that’s
allowed to modify that hash table is that iterator.
If somebody else modifies that hash table your
iterator will throw an exception.

In classic C++ style their response to that
situation is if you ever modify this hash table
while you’ve got iterators on it all of those
iterators are invalid, it’s undefined behaviour –
it just throws it back in your face and you’re
responsible for maintaining this whole program
invariant, which as I’ve said before you can’t be
trusted with. So at least Java throws an
exception, and other languages recognise this
too. Rust goes one better than Java, where it will
tell you at compile time that it’s possible that
this situation could arise.

So we’re throwing away a lot of programs
that you could write in other languages, and
some of those programs will be fine and
correct. But the nature of any static analysis,
any analysis that happens at compile time and
doesn’t have the running program to look at, is
that if it permits all correct programs, if it allows
you to write all the programs that are actually
OK, then it must also permit some unsafe
programs. You can’t exactly match the
boundary between the OK programs and the
not-OK programs – it’s not computable. So the
Rust analysis is conservative, it rejects correct
programs and it always will, but it turns out that
it’s not that bad. Once you get used to it and the
way it’s seeing the world, it’s actually entirely
comfortable and it doesn’t really forbid you
from writing much at all.

LXF: I guess there’s an analogy here with
Gödel’s Incompleteness theorem here, in
that you can have completeness or
consistency, but not both.
JB: That is exactly what it is. But the borrow
checker is something that will improve over
time, any time that we can see a way to improve
that analysis so that it will allow more correct
programs then we’ll do that, but we have to be
sure that it’s sound. The experience of working
in Rust is freaking amazing, though. Once you
get past that, I should say learning curve but it’s
more like a period of suffering, right, maybe
purgatory is a better word. Anyway, you have to
climb that mountain for a few weeks, but once
you get there the view is good. A friend of mine
came to me showed me this algorithm to insert
a value into a binary tree, he said ‘I haven’t
checked it, but it doesn’t crash’. And you see
this code, it’s finding values and replacing nodes
and walking down and things like that. So in C
or C++ you’d be thinking: ‘There’s gotta be a
dangling pointer here somewhere’, you’d have to
really read it thoroughly to check.

LXF: What about multithreaded programs?
JB: There it’s really exciting. Matthias Felleisen
– who is a professor at Northeastern University,

LXF209.iview.indd 42 26/02/2016 12:11

Jim Blandy

April 2016 LXF209 43www.techradar.com/pro

he’s one of the big people in the PLT group that
produced Racket, DrScheme and a bunch of
other things, like a really cool functional-reactive
system called Father Time. His other big focus
is computer science pedagogy and he’s done a
lot of work in how to actually teach Computer
Science to people so that they get it. He was in
a panel just two weeks ago with Gilad Bracha
which was about ‘What should we be studying,
where’s computer science going?’. There was a
lot of dumping on types. Anyway Matthias told
this story about a class that he taught: He took
a whole bunch of students that had never
written parallel code before and he taught them
how to do just that in Rust. Matthias is a serious
iconoclast, he’s so mean, so he’ll put down
anything that he doesn’t think is good—he’s
sincere, but he’s brutal. He said that people
found it difficult for the first two weeks because
progress was slow and students found the error
message confusing. But after those two weeks
they didn’t have any problems, their programs
compiled and ran and did exactly what they
were supposed to do. That I find is really
exciting. The idea that you can use concurrency
as a technique of first resort instead of a
technique of last resort. Which is the polar
opposite of how we do things now, where you
optimise your single-threaded code to within an
inch of its life and then, when you can’t squeeze
out another second, then turn to concurrency.

LXF: Quite often people like to divide
programming languages into fast languages
and slow ones. The fast ones are C, C++ and
Java, and the slow ones seem to be

everything else. On which side does Rust live?
JB: Rust is a fast language. Obviously we’re
building on all the amazing work that the Clang
people have done. Clang itself is a great front-
end, and any C++ front-end that’s usable is an
accomplishment, but Clang is especially good
and it is supported by the optimisation
infrastructure that LLVM has. Not only that, the
LLVM people are just fanatics about software
architecture. It would be very easy to have a
back-end that’s specific to your front-end, I
think that’s probably a common case, but LLVM
is very nicely isolated, which means that
languages like Rust benefit from all that work.

LXF: How hard would it be for an amateur
programmer, say someone familiar with
things like Python and PHP, to pick up Rust?

JB: It’s tricky to say, my sort of workflow looks
like this. So I start a Rust program, it looks really
simple and clean but it doesn’t compile. Then I
argue with the compiler for fifteen minutes or
so and it goes through a process of being really
hairy and code starts to look awkward. Then I
realise that I’ve rearranged things so I start to
take some of this complexity out and picking
the hair out, and then I’m done and it’s actually
beautiful. So the end result often looks like a

nice Python program.
It’s like I just made a
dictionary and then
stuck some stuff in a
dictionary and then I
iterated over it and
got it back out. It does
type inference so you
only have to use types

at function boundaries, you don’t have to use
them inside functions, generally, it just figures
them out.

So in that sense I think it’d be great for
people coming from the dynamic languages.
At the same time I would worry about that
intermediate step where everything’s in pieces
on the floor. Getting through that I’m using
everything that I know, and that might be a
sizeable obstacle for the less experienced. The
difficulty of learning the language might turn
out to be Rust’s biggest weakness. For all the
C++ meta-template programmers out there
and the Haskell hackers I think it’ll be no
problem, but that’s a very small population.

I am working on how best to explain how
Rust works. In the presentation yesterday there
were some parts that didn’t go so well, but the

parts that did go well were the hardest parts.
In particular the ownership moving and
borrowing step, I think I found a good way to
explain that. There will be a book coming out
with O’Reilly at the end of this year, so if all goes
well, hopefully it will have solid explanations.

What Rust shares with Python is safety,
when you’re writing a Python program you
don’t get weird corruption where the system
starts to behave in strange ways you can’t
understand, at worst you get an exception. It’s
very friendly, it just tells you what went wrong.
And Rust shares that quality, it tells you what’s
going on—you don’t end up in Tombolia. That
phrase comes from Gödel, Escher, Bach, where
he says ‘You’ve violated the rules and suddenly
you’re in Tombolia and you have no idea what
anything means anymore’. So there’s no
Tombolia in Rust. That I think will be very
welcoming to people. Thinking about types and
writing them out, some people already think
that way and they’ll be fine. Some people never
think that way, I don’t know how they program,
but they’re going to find it difficult.

The great thing is that although it’s a low-
level, close to the metal language, you don’t end
up worrying about the bits and bytes. It’s not
like you think, ‘Oh, I’ve overflowed and now my
size is wrong and I’ve crashed the program’. You
get exceptions when you convert a 64-bit value
to a 32-bit value and it doesn’t fit. So in some
circumstances it will be welcoming, and in other
senses there will be serious challenges. I don’t
want to say something’s hard, as a flat
statement, because it’s about how everything’s
taught, so we just have to wait for there to be
good teachers, that’s what I want to do. LXF

On Rust’s thRead-safety

“You can use concurrency
as a technique of first resort
instead of last resort”

LXF209.iview.indd 43 26/02/2016 12:11

