
84     LXF193 January 2015

Cython

Im
ag

e 
cr

ed
it:

 W
ik

ip
ed

ia

your original code. However, you still need your original code: 
the emitted module is there to convert the relevant parts of it 
to native machine code, rather than Python bytecode. 

The Cython language is pretty much a superset of Python, 
so (excepting a few specialised modules and functions) any 
valid Python is also valid Cython, and as such can be saved  
as a PYX file and fed to the Cython binary. However, for 
optimal 'cythonising' one needs to use some of the extra 
Cython keywords, which can type variables (including 
function parameters and return types) and provide faster 
array access. 

Many programs won't really gain anything from this 
Cython treatment, and if you're not careful you can end up 
actually slowing things down. For example, if your program 
spends most of its time drawing graphics, or is heavily I/O 
dependent, these are not things Cython can help you with. 
However, if your program is spending most of its life looping 
over arrays, shifting bits back and forth and doing arithmetic, 
then you are in luck.

Compressing data
We're going to use Cython to speed up a crude 
implementation of the fast Walsh-Hadamard transform.  
We are going to use the transform to lossily compress 
greyscale image data, although the principle applies to any 
data. In the early days of satellite imagery, NASA used 
techniques like this since the transform relies only on 
computationally cheap addition and subtraction operations, 
and thanks to some mathematical trickery, the number of 
these operations can be reduced (down to O(n log n) from 
O(n^2) if you care about such things).

An 8-bit greyscale image can be represented as a list of 
unsigned integers from 0 to 255, ie bytes. Each byte 
corresponds to the intensity of each pixel, and so a 256x256 

Cython: Speed 
up Python

Python is a great language. It has a clean and easy-to-
learn syntax and you can do an awful lot in a handful of 
lines. It's just not very fast, which, depending on your 

purposes, could be a deal-breaker. The main reason for this is 
that Python is interpreted: it is read line by line and converted 
on the fly to intermediate bytecode which gets shuffled 
around and eventually executed on the CPU. This takes time, 
but it makes life easier: there's no need to compile your code 
every time you change something, and there's no need to 
type your variables.

The interpreter will figure out which data type everything 
should be, and even if you change, say, a list into an integer, 
it will accommodate your changes without complaint. If you 
really want your Python code to go fast, then rewrite it in C 
and fast it will be. This is easier said than done, though: C is 
hard, and more often than not you'll only be interested in 
accelerating a handful of bottlenecks in your code.

Enter Cython, commonly misconceived as a Python-to-C 
translator. On some level this is true: Cython will take your 
Python code (slightly modified), and spit out a C file which 
you can compile and then import as an extension module, 
availing you of turbo-charged versions of all the functions in 

Jonni Bidwell
is all about getting 
things done in a 
timely manner.

Our 
expert

If you've cdef'd 
everything and still 
want more speed, 
you can pass 
directives (such as 
the infamous -O3) 
to the compiler. 
Check the official 
docs – http://bit.
ly/CythonDocs.

Quick
tip

  In-place addition and subtraction calculates the Walsh 
spectrum without having to multiply by a large matrix.

Jonni Bidwell explains how to feed some Cython-flavoured accelerant into 
your system, using image compression as a working example.

http://bit.ly/CythonDocs
http://bit.ly/CythonDocs


January 2015 LXF193     85

Cython

If you missed last issue Call 0844 848 2852 or +44 1604 251045

image will take up 65,536 bytes, or 64kB. The Walsh functions 
are a well-known family of functions which take on the values 
1 or -1. By summing various component Walsh functions, it’s 
possible to compose any discrete-valued function. For 
example, a row of pixels in our image, or even the whole 
image, could be exactly reproduced by, say, summing one 
Walsh function 300 times, subtracting 84 of another, adding 
6 of yet another, then subtracting 2 of yet another other. The 
Walsh-Hadamard transform will tell you exactly which 
coefficients go with which functions quickly and efficiently. 

In practice, unless you're working with contrived data, 
there’s no benefit to storing the parent function in this way 
(you usually need to sum as many functions as you have 
pixels, or data points). However, if you're not too worried 
about losing some data, then you can often get a very 
reasonable approximation of your data by discarding those 
functions with smaller Walsh coefficients. We won't worry too 
much about storing or even how to store the approximated 
image. Instead, we'll make some educated assumptions 
about its file size – in particular that each coefficient will take 
10 bits to store (so that it can take values between -511 and 
511) in addition to some bits for each index. We can show 
what the compressed image looks like, but it will still be 
represented as an uncompressed array in Python.

 
The Walsh-Hadamard transform
The Walsh-Hadamard transform is commonly represented as 
a matrix transform, where a power-of-two-sized square 
matrix multiplies a power-of-two-sized column vector (our 
data). The matrix is orthogonal and (when an appropriate 
scaling factor is used) unitary, so that the transform can be 
reversed by applying it again. The matrix is an example of a 
Hadamard matrix, the entries of the matrix (when the scaling 
factor is excluded) are all +/- 1, and the rows form the Walsh 
functions. (Fun fact: these were originally discovered 20 years 
before Walsh was born, in the context of eliminating crosstalk 
along parallel telegraph wires.)

The fast Walsh-Hadamard transform exploits the recursive 
structure of the Walsh matrix (it can be defined as a tensor 
product of 2x2 matrices) to perform the computation much 
quicker using some neat in-place calculations summed up in 
the diagram shown on the opposite page. 

In the following code, we cheat a little here and use the 
log2 function from NumPy. Don't worry too much about the 
logic arcana surrounding j and k below. It's just a neat way to 
recreate the butterfly structure shown in the diagram. 

The algorithm works directly on the input, summing and 
subtracting pairs of entries, and so doesn't need to return 
anything as a result:
import numpy as np

def fwht(arr):
    n = len(arr)
    b = int(np.log2(n))
        
    for bit in range(b):
        for k in range(n):
            if k & (1 << bit) == 0:
                j = (1 << bit) | k
                tmp = arr[k]
                arr[k] += arr[j]
                arr[j] = tmp - arr[j]

The bitshift operators << and >> aren't particularly quick 
in Python, but in C they correspond to a machine level 
operation and are much quicker than the equivalent literal 
multiplication or integer division by powers of two.

Our compression algorithm will read, using the Python 
imaging library, a greyscale image as a 1D array. We will divide 
this array into chunks and perform the transform on these 
chunks. We require a function to select and store the largest 
coefficients resulting from each of them. It makes sense to do 
some shifting and rounding here too; you can see the result in 

Cythonic decorations
As well as typing variables, we can also specify 
input or return types for functions. To do this, we 
define the function with cdef and then specify 
its return type before its name. For example, 
our core function fwht doesn't return anything, 
and hence should be typed void. After we have 
optimised the stuffing out of fwht, it then takes 
a memory view of C ints as input, so it’s defined:
cdef void fwht(int[:] arr)

Using cdef means that your function won't 
be available to other Python modules, but you 
can use cpdef (which will incur a slight 

overhead) if you need your function to work 
from outside too. By cimport-ing the cython 
module, we can access a few decorators which 
change behaviours at the function level. For 
example, to turn off profiling for an individual 
function, use:
@cython.profile(False)
def too_cool_for_timing:

You’ll find that this is particularly useful when 
used in conjunction with the inline keyword, 
which is used to 'unroll' small but frequently 
used functions, and for reducing the overhead 

associated with the function call. You will need to 
put the inline keyword right after cdef.

Finally, there are a couple of 'dangerous' 
things that are quite popular, namely:
@cython.boundscheck(False)

and:
@cython.cdivision(True)

which respectively deactivate out-of-bounds 
checking for arrays and checks for division by 
zero. You really should make sure that your code 
is correct before doing this, since they have the 
potential to corrupt memory.

 The first optimisations bring the most benefit. After that, it’s easy to spend 
hours trying to save a few milliseconds.



86     LXF193 January 2015

Cython

Feed your inner mathematician Learn how to program in R on page 88.

 Using the -a 
option generates 
HTML files which 
show you the 
clean, white 
C-like code and 
the dirty, yellow 
Python code.

the function squishChunk() in the files on the LXFDVD. 
Decompression, via the expandImage() function, involves 
taking each chunk, collating the coefficient indices and 
magnitudes into a vector, and then performing the transform 
again, and shifting everything back to the 0-255 range.  
The chunks are then rejoined and we use the show() method 
to display the resulting lossily compressed image. This 
method requires you to be running an X server, since it  
uses the xv program (which you also require) to display.

You can test everything works by copying the directory on 
the LXFDVD to a local folder and from there running:
$ python proftest.py

This program will compress then expand a photo from the 
Philae module's new home: you can see it on the page 
opposite. You can experiment with the chunksize and nterms 
parameters at the beginning of the fwht_python file. 

The initial values (32 and 8) give a nominal compression 
ratio of just over 2:1, although this is meaningless as we aren't 
storing the compressed data. It could also be vastly improved 
by varying the number of terms for each chunk – areas of the 
same colour need only a single term. We can profile this code 
using the cProfile module by running:
$ python -m cProfile proftest.py

This lists every single function involved in the program, 
including all the weird functions involved in decoding a PNG 
image, so we can filter this to show our own efforts by adding  
| grep fwht to the above. On a dusty LXF office machine, 
the whole execution took about five seconds, just over three 

seconds of which was spent in the fwht function: pretty 
reasonable, given that fwht is the heart of our program.

We ought to be able to speed this up quite a bit by using 
NumPy arrays instead of lists. NumPy arrays can be initialised 
with zeros, but it's slightly quicker to avoid this step (so the 
array initially contains whatever random data was in the 
memory allocated to it) if you know the values will be filled in 
later. You also need to specify a data type for the array, and 
it's better to not use methods for Python lists such as len(). 
You'll find the code in the file fwht_numpy.py. You'll also find 
that it takes about twice as long to run – benchmarking is full 
of surprises. Despite this slight disappointment, we'll stick 
with our arrays – Cython might do a better job with them.

Enter Cython
It makes sense to initially concentrate our efforts on speeding 
up the fwht() function, which is at present quite readable. 
A simple first step is to specify data types for all the local 
variables in this function. Although they are all integers, and 
you can get away with declaring them as such, the for loop 
indices have a special type Py_ssize_t so we may as well use 
it. Add the following lines at the beginning of the fwht 
function in fwht_numpy.py and save the file as, say,  
fwht_cython1.pyx:
def fwht(arr):
    cdef int n = arr.shape[0]
    cdef int b = int(np.log2(n))
    cdef Py_ssize_t bit,k
    cdef int j,tmp

Now run:
$ cython -a fwht_cython1.pyx[/b]

This will generate some very messy C in a file called fwht_
cython1.c. The -a switch tells Cython to additionally generate 
a similarly named HTML file which you should look at. The 
lines with your newly typed variables are white, whereas most 
of the rest of the code will be various shades of yellow. 
You can even click on each line to see how it looks in C, and in 
so doing you will discover that the yellow lines correspond to 
lengthier or more involved code. We will still want to do some 
benchmarking, so add the following decorator at the top 
of the file:
# cython: profile=True

Getting your Cython code compiled is a little bit of effort. 
You can do it manually, but it's easier to use the cythonize  
function and the distutils module. Create a file setup.py  

Benchmarking
It's easy to take benchmarks too seriously – 
graphics card enthusiasts have been doing so for 
years. In our tutorial we use the cProfile module 
which enables you to count and time each 
function call. This can provide valuable data 
about where the bottlenecks in your code are, 
which might not be immediately obvious.

CProfile is designed to be as lightweight and 
unobtrusive as possible, but if you have a tiny 
function that’s called millions of times, then 
that's millions of tallying calls and they all add up. 
If the function is really small, this means that 

more time is spent benchmarking than is spent 
doing whatever it is the function does, and so the 
result is largely meaningless. If you're confident a 
small function can't be sped up any more, it's 
best to disable the profiler. If you're not so 
confident, then by all means continue to 
benchmark such small functions, but rest 
assured that they will work a lot faster without 
the profiler interfering.

If you just want to measure 'wall time', which is 
the total time it takes for your code fragment to 
run, then the timeit module may be more 

appropriate. For example to test (from the 
interpreter) a function called testfunction() 
from a module testmodule three times:
import timeit
 timeit.timeit(stmt='testmodule.testfunction()', 
setup='import testmodule', number=3)

The default for number is a million, which is 
why it’s a good idea to specify your own value 
here. You will need to specify your module in 
the setup parameter even if you have 
previously imported it, since timeit will not 
inherit this namespace.



January 2015 LXF193     87

Cython

 A postcard from 
comet 67P in 
both the original 
(left) and heavily 
compressed 
version (right). 
Landing stuff on 
extraterrestrial 
bodies is pretty 
much the only 
way to make 
space engineers 
hug each other.

(you can find an example on the LXFDVD) with the 
following contents:
from distutils.core import setup
from Cython.Build import cythonize

setup(
    ext_modules = cythonize("fwht_cython1.pyx")
)

Now if you run:
$ python setup.py build_ext --inplace

everything will be built and you can modify proftest.py  to 
use your new fwht_cython1 module. Benchmarking this (still 
using NumPy arrays) on our machine actually slowed things 
down – the fwht() function alone took about 20 seconds. 
But don't lose heart: the reason for the slowdown is that C 
has to access arr through Python and NumPy methods.

Memory views
Recently Cython introduced a new way to access array  
data through something called memory views. These  
enable C to directly access the array data in memory, and 
hence are damned fast. But they don't work with Python lists, 
which is why we are stuck with our slower NumPy arrays. 
We'll make fwht() work on a memory view by changing the 
definition line:
def fwht(int[:] arr):

The functions squishChunk() and expandChunk() will 
need to be modified too. So lets go ahead and define f_view 
in squishChunk() like so:
cdef int[:] f_view
f_view = f

Replace all further references in the function to the array  
f with f_view, with the exception of the enumerate call, which 
is a Python function. Likewise define fbar_view in 
expandChunk(), and replace all fbar references except the 
return fbar statement. While we're at it, we may as well type 
all the js and ns and whatnot as ints too. Now re-run setup.
py and benchmark. Now we're cooking with gas – the total 
execution time was less than three seconds, most of which is 
now spent in the squishChunk() function. The bottleneck 
here is ranking our coefficients and powers, so let’s separate 
that into a separate rankArray() function, which is less reliant 
on Python constructs:
def rankArray(int[:] F):
    cdef int n,j
    n = F.shape[0]
    Franked = np.empty([n,3],dtype=np.int32)
    cdef int[:,:] Franked_view = Franked
    
    for j in range(n):
        Franked_view[j,0] = j
        Franked_view[j,1] = F[j]
        Franked_view[j,2] = - abs(F[j])
    Franked = Franked[Franked[:,2].argsort()]
    return Franked[:nterms,:2]

Now change the return line in squishChunk() to use this, 
and check the benchmarks. On our machine this shaved off 
nearly a second, and we were quite happy about that. From 
here on in it's diminishing returns, but we've provided as 
much optimisation as we can in the file fwht_cython.pyx 
on the LXFDVD. This took total execution time down to 1.6 
seconds – see if you can do better! LXF


