
Tutorial Xxxx

80     LXF176 November 2013 www.linuxformat.com

Tutorial Xxxx

Penguin is good (12.04 is a long term release) or Raring
Ringtail (13.04). You will also need to install the juju-core
package, or the older Juju package (for installation details for
your distro/platform, see https://juju.ubuntu.com/docs/
getting-started.html).

It is also a really good idea to install the charm-tools
package, which has a few functions to help you along.
Whatever the case, you should also have an environment
where you can create instances with Juju, such as an AWS
account, HP Cloud or OpenStack. If you have any difficulty
setting up Juju on your cloud provider, check the link above.
Assuming that’s all in place, we can get started!

OK, so the first thing to do is create the directory structure
for your charm, and fill it with the placeholder files we will
need. Since you installed charm-tools, this is easy.
mkdir -p ~/localcharms/precise
cd ~/localcharms/precise
charm create vanilla

You will see an error which says ‘failed to locate vanilla in
apt-cache’. This is fine. If you were creating a charm for a
package that was already locally installed, the charm tools
would have done a bit more work and filled out some of the
metadata for you, but not to worry.

Creating charms
The first port of call is the metadata.yaml file. This contains
all the important information that Juju will need to know
about the charm, but it actually looks quite simple. The first
part is straightforward:
name: vanilla
summary: Vanilla is an open-source forum.
maintainer: my name <your@email.tld>
description: |

Vanilla is an extendable, multi-lingual forum system. This
charm will deploy Vanilla according to the official instructions.

As you can see the YAML format is quite readable, and
contains simple key:value pairs, which so far have been
mostly simple descriptions. The next part is a little more
important.
categories:
 applications
provides:
 website:
 interface: http
requires:
 database:
 interface: mysql

Categories is a list, as your charm can be in more than
one (put each on a new line). The valid options here are
databases, file-servers, applications, cache-proxy, app-
servers, miscellaneous. Don’t worry about this too much, it is
really only for making them searchable online. There are two

Juju: Making charms
Juju Create a charm for deploying your
preferred services to the cloud quickly

Cloud-enable your services using some West African magic and this
charming man you may have met before, Nick Veitch.

Juju is great. If you haven’t heard of Juju, then you aren’t
being the best you can be at clouds (see Juju GUI, p81
for details on the demo). The underpinning thing about

Juju is charms. A charm is a little bundle of distilled expertise
that knows how to deploy a particular service – say
something like MySQL or WordPress. But it is more than just
a glorified install script: it can also make sense of other
services and connect them together (eg joining MySQL to
WordPress so the latter can use the former as a back-end).
Charms are, quite simply, magic and in this tutorial, we are
going to make some magic happen!

There are a few things you will need in order to create a
charm. Although it is possible to do on other distros, it is
much easier if you have a recent version of Ubuntu. Precise

 The structure
of your charm
directory should
look like this!

Nick Veitch
remembers he
launched LXF with
only a set of Bash
scripts keeping
the magazine
going. They were
replaced with
‘people’, a
retrograde step
in his opinion.

Our
expert

https://juju.ubuntu.com/docs/getting-started.html
https://juju.ubuntu.com/docs/getting-started.html

www.tuxradar.com November 2013 LXF175     81

 Juju Tutorial

If you missed last issue Call 0844 848 2852 or +44 1604 251045

important sections below though – provides and requires.
The provides section includes services our charm will
provide. In this case it is a website, so we put that down and,
as an indented value, include the interface it will use to deliver
this service. The names here don’t matter too much – we
could have called the service ‘web’ or ‘forum’ or something,
but it is important to remember the name because we will
need to use it for naming our scripts later.

Requires is a little more specific, because in this case we
will be consuming another service (MySQL). If we check the
metadata of the MySQL charm, we see that in the provides
section it states it provides a database with an interface of
MySQL. That’s exactly what we want. This information allows
Juju to work out ways in which services can connect, so it
knows what scripts to look for.

Hooking up charms
Okay, now for the clever bit. The hooks directory contains
executable scripts with specific names which are called upon
when certain things happen. Think of it as event handling, but
for services. These events can be broken down into two types
– lifecycle and environmental. The lifecycle ones deal
specifically with events that only happen to our service, and
are always named the same – start, stop and install. Let’s
write one now. We will start with ‘start’, as it is pretty easy:
 #!/bin/bash
set -e
service apache2 restart

As this is an executable file, it should start with the usual
hash bang. An important note here – we are using Bash
because it is simple and easily understood by most people,
but you can write your scripts in any language you want, as
long as it is executable on a standard Ubuntu server. We
wouldn’t recommend Fortran 77, but it is up to you. The
set -e line is important, as it tells the script to exit and return

an error code if any of the subsequent commands fail – if
something goes wrong, we want Juju to know about it. The
vanilla forum runs from an Apache web server (in our case –
you could use something else if you wanted). To start this
service then, all we need to do is start Apache. But what if
Apache is already running? Then we should just restart it –
the restart option will start Apache if it is stopped, or restart it
if it is running. This means our script is ‘idempotent’ (see the
Idempotency! box top of p82), which means we can run it
several times without changing the desired result.

The stop script is similar and simply uses a slightly
different command to stop Apache. The real tricky one is the
install script – this has to download and install everything we
need to run Vanilla, and copy the files into the correct
directory. We’ll break this down to explain it as we go along…
#!/bin/bash
set -e
apt-get install -y apache2 php5-cgi php5-mysql curl php5-gd
wget libapache2-mod-php5

Yes! we can use apt-get to install any dependencies
(remember to use the -y switch to disable any interaction).
In this case we want Apache, wget (for fetching our Vanilla
source) and various PHP bits we need to make Vanilla work
properly. Your requirements may be different of course –
base it on the dependencies required by your software on a
plain Ubuntu server install.
dl=”https://github.com/vanillaforums/Garden/archive/

Juju: Making charms

 If you need help setting up Juju, check out the online
docs at https://juju.ubuntu.com/docs.

Juju GUI
Tired of typing? You should check out the
Juju GUI, a drag and drop interface for
deploying charms in your cloud. The GUI
runs as an instance and makes all those
tedious relationships so much easier to
manage. A browser on the left shows all

the available charms from the demo
store, and you can drag them onto the
main panel to deploy them.

Try out the live demo site to see what
you are missing!
https://jujucharms.com/sidebar.

 The Juju GUI makes deploying cloud services look a bit too easy. Shhhh.

https://juju.ubuntu.com/docs/getting-started.html
https://jujucharms.com/sidebar/

82     LXF176 November 2013 www.linuxformat.com

Tutorial Juju

Vanilla_2.0.18.8.tar.gz”
Grab Vanilla from upstream.
juju-log “Fetching $dl”
wget “$dl” -O /tmp/vanilla.tar.gz

This part fetches the tarball from the website – it is a good
idea to fetch a specific file – one you know will work!
check if installed
if [-f /var/www/vanilla/conf/config.php]; then
 cp /var/www/vanilla/conf/config.php /tmp/
 rm -rf /var/www/vanilla
fi

What if Vanilla is already installed? In that case we should
preserve the configuration, which is what the above does.
Now we can extract the files:
Extract to a known location
juju-log “Extracting Vanilla”
tar -xvzf /tmp/vanilla.tar.gz -C /var/www/
mv /var/www/Garden-Vanilla* /var/www/vanilla
if [-f /tmp/config.php]; then
 mv /tmp/config.php /var/www/vanilla/conf/
fi

We should also change the permissions on relevant files:
chmod -R 777 /var/www/vanilla/conf /var/www/vanilla/
uploads /var/www/vanilla/cache

The next step is to configure Apache to know about Vanilla
and edit its configuration to include an entry for it. This can
easily be done by redirecting the output from cat to the
relevant file:
juju-log “Creating apache2 configuration”

cat <<EOF $gt; /etc/apache2/sites-available/vanilla
<VirtualHost *:80>
 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/vanilla
 <Directory /var/www/vanilla>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride All
 Order allow,deny
 allow from all
 </Directory>
 ErrorLog \${APACHE_LOG_DIR}/vanilla.log
 LogLevel warn
 CustomLog \${APACHE_LOG_DIR}/access.log combined
</VirtualHost>
EOF
a2dissite 000-default
a2ensite vanilla
service apache2 reload
juju-log “Files extracted, waiting for other events before we
do anything else!”

The last bits at the end there make Apache aware of the
website and reload it so it gets the configuration changes.
You may notice some juju-log commands. These are used to
send log messages to the /var/juju/ logfiles, and can help a
lot with debugging your scripts.

Relationships
Relationships can be tough, but the hooks relating to them
are quite straightforward. The first thing to know about this
type of hook is that they take their name from the
relationships mentioned in the metadata. So, for example, we
will need some event hooks to deal with
<relation name>-relation-joined
<relation name>-relation-changed
<relation name>-relation-departed
<relation name>-relation-broken

Some of these events are self-evident. The relation-joined
is called when a relation is established. As this also means the
relationship has changed, the relation-changed hook runs
right afterwards. A departed state happens when a service
disconnects, and a broken state when a relationship that was
established is no longer available, to enable any cleanup.

So, we need a set of scripts for our database service to
deal with these events. However, each time an event happens,
if Juju doesn’t find a script to run by the appropriate name,
it just assumes everything is fine. This saves us from writing
dummy scripts.

For example, there is no need to write a database-
relation-joined script if we are going to write a relation-
changed script which can handle the initial connection too.
#!/bin/bash

set -e # If any command fails, stop execution of the hook
with that error
db_user=`relation-get user`
db_db=`relation-get database`
db_pass=`relation-get password`
db_host=`relation-get private-address`
if [-z “$db_db”]; then
 juju-log “No database information sent yet. Silently exiting”
 exit 0
fi

Never miss another issue Subscribe to the #1 source for Linux on page 32.

 Browse the
hook code of
other charms
online and check
out their Readme
files for tips on
how to connect
to them.

Idempotency!
Idempotency is a word you will hear a lot
with regard to charm hooks (and maybe
other places depending on the company
you keep). It means that re-running the
operation shouldn’t change the intended
end result. So if the operation is to start a
service, it should end up started, no

matter what state it was in to begin with.
It can be tricky to think of all the
scenarios where relationship hooks
apply, but just bear in mind that you
shouldn’t make assumptions about the
state of services when triggering a script.
This helps charms be more robust.

www.tuxradar.com November 2013 LXF175     83

Juju Tutorial

vanilla_config=”/var/www/vanilla/conf/config.php”
cat < $vanilla_config
<?php if (!defined(‘APPLICATION’)) exit();
\$Configuration[‘Database’][‘Host’] = ‘$db_host’;
\$Configuration[‘Database’][‘Name’] = ‘$db_db’;
\$Configuration[‘Database’][‘User’] = ‘$db_user’;
\$Configuration[‘Database’][‘Password’] = ‘$db_pass’;
EOF
open-port 80

The relation-get command is a helper function for Juju,
which can be used to communicate with the Juju scripts
running on other instances. In this case, invoking the
command:
juju add-relation vanilla mysql

will run the database-relation-joined script in our charm,
but it will also run the corresponding script in the MySQL
charm. From examining that script we can see that when
something makes a connection with the MySQL service the
script generates a database and a user with the relevant
permissions. The helper function can fetch these generated
values (they are random for obvious security reasons) for us,
and then our script can write them into the Vanilla
configuration file. Any time this connection is changed, the
values can be fetched again (such as when the original
database is replaced by a different unit) so that
communication can be maintained. As we need a database,
there is not much point creating the other scripts – the
service will simply not work without this connection.

Making it work
Conversely, we need to create a script to handle connections
to the service we provide. So, for the file website-relation-
joined we will have:
#!/bin/sh
relation-set hostname=`unit-get private-address` port=80

The relation-set is the corollary to relation-get, it exposes
key=name values, in this case hostname and port. The
backticked command uses another helper function, unit-get,
to retrieve a local value (the address of the server).

You might think that this service, which is just a website
after all, can operate and make connections outside of Juju –
that is sort of the point of a forum. That is true, but never
neglect the fact that other charms may want or need to
consume your service – in this case there could be a caching
proxy somewhere in your cloud for example.

Those are the basics we need to make our service work.
Assuming you have installed and configured Juju, all you need
now is to boostrap an environment and deploy your charm.
Oh, and MySQL!
juju bootstrap
juju deploy mysql
juju deploy --repository=~/localcharms local:precise/vanilla

juju add-relation mysql vanilla
juju expose vanilla

The special deploy line for our charm tells Juju to look in a
local directory – we have also specified the ‘series’, in this
case Precise. The expose command tells Juju that this is a
public service and so it should make any firewall adjustments
required for people to connect. But where is it? If you wait a
few minutes (it takes a little time to install all that software!)
you can run:
juju status

this will list all the machines and services that are running,
and crucially, will also list their ports, something like this:
units:
 vanilla/0:
 agent-state: started
 agent-version: 1
 machine: “2”
 public-address: ec2-54-224-220-210.compute-1.
amazonaws.com

Then you can simply copy and paste the public-address
into your web browser to get to the service.

Finishing touches
If you want to distribute your charm, there are a few more
things you should provide with your charm: a Readme is a
must, as is some sort of copyright file. You may also provide
an icon! This is used for the Juju Charm Store (an online
browseable repository of available charms) and also in the
GUI (see Juju GUI, p81).

Charms are not simply intended for deploying services,
but also for managing them – particularly at scale. To go a bit
further, you may want to think about in which ways your
service might be made highly available. We have shown you
how to make a basic, workable charm, but there are so many
more things you can do. Check out the online docs for Juju at
http://juju.ubuntu.com. LXF

 The Vanilla
startup page
should appear
– well done on
deploying your
very own charm!

When things go wrong

Local provider with LXC

Your Juju charms are unbelievably
unlikely to work first time you set them
up. To help diagnose when things go
wrong, you can SSH in to the machine the
charm is being deployed on, by using the
machine name given from juju status

command. Juju will automatically add
your SSH key to each deployed machine,
so you just do:
juju ssh <machine name>

And then you can browse the logs or
do whatever else you need to.

You don’t need to have a cloud account with HP or Amazon
to mess around with charms. There is currently
experimental support for LXC (Linux containers), which
means you can run a cloud virtually on local instances –
it saves time and money and is great for when you are
developing charms. You can find the latest instructions on
configuring Linux Containers at
http://juju.ubuntu.com/docs/config-LXC.html.

http://juju.ubuntu.com/docs/config-LXC.html

