
Tutorial Xxxx

70     LXF176 November 2013 www.linuxformat.com

Tutorial Xxxx

Our
expert

Mike Saunders
spends ages
compiling things
for the HotPicks
section, so he
hopes this
program will
encourage app
developers to
package up their
work properly.

 Now, we all appreciate the work that distro developers do to
package up software. If you’ve ever tried to make a Deb or
RPM file by yourself, you might have run away screaming
after a couple of hours of graft. It’s not an especially simple
process, and even when you’ve grokked it fully, it can be very
time-consuming. FPM (http://github.com/jordansissel/
fpm) aims to solve this, and its fundamental principle is:
“If FPM is not helping you to make packages easily, then there
is a bug in FPM.” Great, but why would you want to make your
own packages in the first place?

 You’re writing your own program, you want to distribute it
online and you want to give users something easier to install
than the source code.

 You’re an admin, you’ve built a custom version of some
software, and you want to roll it out easily across other boxes.

 You just want to learn more about how packages work,
boost your geek credentials and have something to natter
about at your next LUG meeting.
Whatever the case, read on and we’ll discover how FPM
makes the job of creating and modifying packages much
easier than you might expect.

First steps with FPM
FPM is written in Ruby, so first of all you’ll need to get the
latest version of the programming language, along with its
development files. On a X/K/Ubuntu 13.04 box it’s as simple
as this:
sudo apt-get install ruby1.9.1 ruby1.9.1-dev

Almost every major distro has Ruby in its repositories
though, so if you’re running a different distro just search for it
in your package manager. FPM is available as a Gem – that is,
a Ruby package – so install it like this:
sudo gem install fpm

You’ll see lots of output whizz by as RubyGems grabs and
builds various dependencies. Once the process has finished,
you’re ready to use FPM.

Now, for FPM to do its job properly, it needs a bunch of
files that it can wrap up into a package. These can be any
kinds of files – after all, packages can contain executables,
configuration files or images – so FPM doesn’t ask for
specifics. What it does need is a location containing the files,
with the appropriate directory structure.

Let’s look at the second scenario mentioned in the
introduction: customising a program and making a package
from it. In this case, we’re going to use a simple program
that’s easy to build, Dateutils (www.fresse.org/dateutils) as
covered in this month’s HotPicks (See p63). Download
dateutils-0.2.5.tar.xz and extract it like so:
tar xfv dateutils-0.2.5.tar.xz

At this stage you could make any customisations that you
need, but for now we’ll simply jump into the resulting
directory and compile the program. Note that binary

FPM: Building
Package building: Discover the easy
way to make Debs and RPMs

Building packages has never been an easy job. Until now that is, thanks  
to FPM. Mike Saunders explains the change.

W hen it works, Linux package management is a
marvellous thing to behold. Dependencies are
resolved automatically, everything can be installed

and easily removed with a few commands, and you can
quickly find out which files belong to which packages.
Sometimes it’s not so pretty, when developers split up
programs into 50 packages or you try to install an older
package on a newer distribution release, but compared to the
Windows world, where there are umpteen different installers
in use and programs leave all sorts of crud in your Registry –
well, it’s world’s apart.

 Here, Dateutils
hasn’t been
installed system-
wide, but in
a temporary
directory instead.

www.tuxradar.com November 2013 LXF176     71

FPM Tutorial

If you missed last issue Call 0844 848 2852 or +44 1604 251045

packages typically install into the /usr directory, as opposed
to /usr/local/. This is just a convention, and it’s not
massively important. So we use the --prefix= option for the
configure script:
cd dateutils-0.2.5/
./configure --prefix=/usr
make

From here, the usual command to install the program
would be something like sudo make install. However, we don’t
want to scatter the files around the filesystem now; instead,
we want to place them in a separate and distinct directory so
that FPM can find them easily and bundle them into a
package. This is possible with:
mkdir /tmp/packagedir
make install DESTDIR=/tmp/packagedir

If you look inside /tmp/packagedir, you’ll see all of the
files for a successful Dateutils installation, as per the first
screenshot. The DESTDIR part should always work with
programs that follow the usual ./configure, make and make
install procedure, but with other build systems you should
check the documentation to find out how to install files into a
temporary directory.

Creating a Deb package
So now we come to the big moment: using FPM to convert
this directory into a package. The command you need is:
fpm -s dir -t deb -n dateutils -v 0.2.5 -C /tmp/packagedir/ .

Let’s go through this carefully bit-by-bit. The first option, -s,
tells FPM what we want to use as the source for the package;
in this case it’s a directory. FPM can use other sources as well,
as we’ll explore later.

Next is the -t option which describes the type of package
that we want to create (a Deb in our case, but you can use -t
rpm to build RPMs providing you have the relevant software
installed (see the Building RPMs box on page 72). The -n
switch provides the name for the package, while -v specifies
the version. Finally, the -C part tells FPM to change into the
specified directory before searching for files, and the ‘.’ says
that it should search from the base of the directory that its
been switched-to.

Once this command has completed, you’ll see something
like this displayed:
Created deb package {:path=>”dateutils_0.2.5_i386.deb”}

Take a look at the package details:
dpkg --info dateutils_0.2.5_i386.deb

You’ll see that FPM has populated many of the package
description fields automatically, eg using your login name and
system hostname for the vendor and maintainer fields.
Others are given generic text, like the description and
homepage. You can add options to the FPM command to
customise these, as we’ll see in a moment, but for now you’ll
want to install the package to check that it’s working:
sudo dpkg -i dateutils_0.2.5_i386.deb

 Ta-da: our
newly built
package in all its
glory. Some of
the information
fields need some
more details, but
we can easily
fix that.

packages

Enter one of the commands included in the package,
such as ddiff, and you’ll see that everything is in order.
Great success! If you’ve ever tried to make a Deb package the
traditional way, you’re probably be jumping for joy at the
simplicity of all this (or crying at the difficult memories it
conjures up). And we’re only just getting started…

During the package building phase, you can add extra
information to the resulting file. This isn’t a step which is
necessary to produce a functional package, but if you’re
creating packages for others to use it makes your work look
more professional. First of all, add a textual description via the
--description flag: use single quotes to specify the text, which
also lets you enter newline characters. A good description
shouldn’t be too long or meandering, and simply explain the
core purpose of the program.

Customising the results
Next, use --url to add a website address for the program,
which is typically its home page. It’s also a good idea to use
--license (put multiple words in single quotes if necessary)
so that end users know whether they can redistribute the
package, along with --vendor and --maintainer to provide a
contact address if a user needs to get in touch.

The --before-install, --after-install, --before-remove and
--after-remove options are especially useful. With these, you
can provide scripts that should be run at the corresponding
times during the (de)installation process.

Many packages make use of these scripts to perform
initial setup operations before putting the files in place, or
cleaning up old temporary files after the package is
completely removed.

To see how this works, create a text file called afterinstall
in /tmp with the following contents:
#!/bin/sh

ls --color

Tutorial FPM

72     LXF176 November 2013 www.linuxformat.com

Never miss another issue Subscribe to the #1 source for Linux on page 32.

You will need to make it executable (chmod +x /tmp/
afterinstall) and build the package again, using the --after-
install option like this:
fpm -s dir -t deb -n dateutils -v 0.2.5 --after-install /tmp/
afterinstall -C /tmp/packagedir/ .

When you install the new package, you’ll see the output of ls
--color after the Setting up dateutils (0.2.5) line. This is a
highly versatile system, in that you can print out messages
during the installation phase or even ask the user questions
with a bit of shell scripting.

Conflicts and dependencies
Some packages can’t be installed if a certain other package is
already present on the system. This isn’t a common
occurrence, but it helps to avoid clashes between packages
that provide the same functionality in the same filesystem
locations. Try building the package with --conflicts xterm, for
instance, and then installing it again – you’ll see an error
saying that the package can’t be installed because Xterm is
already on the system. (Well, providing you have Xterm
already installed, of course.)

While our Dateutils example has no requirements beyond

the standard C library, most programs will need other
libraries and packages installed to run. Yes, we’re talking
about dependencies here, but don’t run away screaming as
FPM handles them elegantly.

First off, you’ll need to find out which libraries (and
versions) are required by the program you’re packaging up. If
the software is well documented, you should be able to find
this out from the Readme and Install files, but if not, there
are some other tricks you can employ. Running ldd on the
program’s main binary after compilation will show you a
detailed list of every library file that it uses, and with your
usual packaging tools you can find out which library file
belongs to which package.

Let’s say that Dateutils needs at least version 2.17 of the C
library. We can specify this as a dependency during the build
phase like so:
fpm -s dir -t deb -n dateutils -v 0.2.5 -d ‘libc6 (>= 2.17)’ -C /
tmp/packagedir/ .

The most important thing to note here is the >= part,
which means ‘greater than or equal to’. So, our Dateutils
package won’t be installed unless the current C library
version is 2.17 or newer. You will need to change that to

Building RPMs
As mentioned earlier, to make RPMs you just need to pass the
-t rpm option to FPM. This should work without a hitch on
RPM-based systems, but if you’re running another distro you’ll
need extra tools. On Ubuntu-based distros you can use sudo
apt-get install rpm which provides the rpmbuild program that
FPM needs. Then, by running the previously listed commands
with -t rpm, you will end up with a package that’s called
dateutils-0.2.5-1.i686.rpm.

Note that there are some FPM options which only apply to
RPMs. You can get a list of these by running fpm --help and
looking for the lines which contain ‘rpm only’. You should also
take care with RPMs that are produced on Deb-based systems:
in most cases they shouldn’t pose any problems, but if you’re
distributing software online then it’s worth trying them out on a
genuine RPM-based distribution before open the doors and
handing them out

Tips for distro independence

Building a package that works across
multiple distros is no mean feat. A few
projects emerged over the years that
aimed to create a distro-neutral
packaging format, most notably the now
defunct Autopackage, but none of them
really took off. Still, there are a few things
you can do to ensure that your packages
work on as many distros as possible.

First, try to build the package on a
slightly older version of your distro.
Whether this is possible or not depends
on the program’s dependencies, but if
you can get by with older versions of
libraries, that helps a lot. For instance,
if your distro has libfoo 3.4, but you can
build the package on an earlier distro
release that has libfoo 3.1, then your
package (should!) work on a wider range
of distros with varying libfoo versions (eg
a spin-off of your distro that has libfoo
3.3). Generally, open source libraries take
backward compatibility seriously, so you

shouldn’t run into major problems with
this approach.

In your post-installation scripts, try to
use vanilla tools that are available on
every distro, and not distro-specific
programs. If you’re building a package on
OpenSUSE and need to do some
configuration work after the installation
phase with a post-install script, it might
be tempting to call a Yast module,
but then the package definitely won’t
work on Fedora.
Also, take a look at the Linux Standards
Base and Filesystem Hierarchy Standard
(www.linuxfoundation.org/
collaborate/workgroups/lsb). These
are projects that attempt to unify the
common toolset, libraries and directory
layouts across distros, and many distros
include an lsb_release script for getting
version information. You could use lsb_
release -a in a script to find out which
distro and version are being used. Many distro-neutral packaging formats have come and

gone. Do you remember this one?

FPM Tutorial

www.tuxradar.com November 2013 LXF176     73

 See http://goo.gl/sWs3Z for a light-hearted presentation from FPM’s
author, explaining his motivation for writing the program.

Building static binaries

 Ermine massively simplifies the job of making
statically-linked binaries, but it’s not open source.

something excessively large version number like 9.99, rebuild
the package and try to install it again, and you’ll see a
message along the lines of:
dpkg: dependency problems prevent configuration of
dateutils:
 dateutils depends on libc6 (>= 9.99); however:
 Version of libc6:i386 on system is 2.17-0ubuntu5.

It’s possible to specify multiple dependencies with a series
of -d flags followed by the package names and versions as
illustrated in the code above. If the program you’re packaging
up has a vast range of dependencies, check in your distro’s
package manager to see if there’s a meta-package to cover
them all. For instance, if you’re creating a package for a
Gnome app, instead of typing in endless lines of
dependencies for the various parts of Gnome, you could
simply make your package dependent on ‘gnome’ which
itself pulls in all the major Gnome dependencies.

Advanced options
So far through this tutorial, we have looked at using
directories as sources for FPM; the -s dir part. But FPM can
generate packages from other files as well, such as tarballs.
If you have foo-1.0.tar.gz which contains files and a directory
structure that can be copied into the filesystem (eg /usr/
bin/foo, /usr/share/doc/foo/ and so forth), then you can
convert it into a .deb or RPM using -s tar like this:
fpm -s tar -t deb -n foo -v 1.0 foo-1.0.tar.gz

Another source that FPM can use is Python modules.
Thanks to easy_install, FPM can download modules and
package them up automatically, rather than having to hunt
around on websites. For instance, to build a package of PyX,
a module for creating PostScript and PDF files:
fpm -s python -t deb pyx

Last of all, with -s empty you can create completely
empty packages. But why would you want to do that?

Well, this feature is primarily useful for creating meta-
packages. For instance, you might be setting up a bunch of
desktop machines with a specific combination of programs (a
certain window manager, web browser, editor etc.) Instead of
installing the programs by hand on each machine, or fiddling
around with a script, you could create a meta-package with
the required programs as dependencies. Then you just need
to install the package on each machine and the package
manager will handle the rest. LXF

One way to make your packages work
across many distros is to statically link
the executable files. Normally, programs
make use of external code libraries via a
system called dynamic linking, that is,
they access the libraries when needed.
Libraries typically live in /lib and /usr/
lib, are provided in their own packages,
and can be updated independently of the
programs that use them.

This is a very sensible system: why
should every GTK-based program include
its own version of the GTK library, when
they could all share the same version?
And it’s good from a security viewpoint
as well, because when a vulnerability is
found in GTK, you can update the shared
version and all programs using it are
automatically fixed.

Now, if you’re willing to lose these
benefits, you can statically link the
executable file(s) inside your package.
This rolls all of the shared library code
into the executable, producing a much
larger file but one that will work virtually
everywhere. It doesn’t matter which

library versions a distro is using; all the
code your program needs is included in
the executable. Building static binaries is
complicated, but a proprietary program
called Ermine exists that makes it much
simpler (www.magicermine.com).
Download the ErmineLightTrial.i386 (or
.x86_64) file and make it executable.
Now find the binary that you want to
make static. For example, let’s look at the
gedit binary here: if we run ldd /usr/bin/
gedit we see that it uses over 60 shared
libraries on the system. But after doing
this:
./ErmineLightTrial.i386 /usr/bin/gedit

--output static-gedit
We now have a complete binary called

static-gedit which doesn’t depend on
any other libraries. It’s much larger at -
42MB, compared to 671K. In general, it’s
better to stick with dynamic libraries in
most scenarios, but if you’re using FPM
to distribute your self-written software on
the net, you could make an optional
statically linked package for users who
can’t get the normal package to work.

