
Tutorial ExifTool

92 LXF143 April 2011 www.linuxformat.com

Marco Fioretti
Is the author of
The Family Guide
to Digital Freedom.
He’s also a free
software activist
and programmer.

Our
expert

In and of themselves, the scripts are quite simple to use.
As long, that is, as you know the rationale behind them and a
thing or two about photographic metadata. In fact, the most
complicated part of this tutorial isn’t understanding how the
scripts work, but why they have to do certain things.

Starting with chaos
OK, let’s say that one day you wake up and decide to make
one, neatly ordered digital collection of all the paper and
digital photographs you care about. By hand, that isn’t just a
long adventure, it’s also a desperate one. The chances are
that you will face any combination of the following tasks: the
first is how to digitise your physical pictures, which is boring
and time consuming, but conceptually simple. To speed
things up, you can scan four photographs at a time with any
A4 scanner and save the results with unique names using the
method I explained in LXF123.

Another common need is to make sense of all the digital
pictures sent to you by friends with different digital cameras
or even the same model as yours. The former will fill your
drive with files bearing every conceivable, and thus
inconsistent, naming scheme known to man. Hundreds of
files will be named something like XYZ_001.JPG to XYZ_153.
JPG, while others will be P00001.jpeg to P99999.jpeg and
so on. If you’re unlucky enough to own the same camera as
your friends, you risk getting a bunch of files with the same
names as yours, inviting disastrous overwriting situations
unless you’re really careful.

The worst case scenario combines the most annoying
characteristics of the two problems mentioned above. This is
when you receive files of scanned paper pictures in every
graphic format conceived since the inception of the transistor.
What’s more, their names will be light years away from
anything useful or consistent. I can only imagine that whoever
sent these files to you hates you subconsciously.

ExifTool: Sort y

ExifTool Organise your photo collection
in mere minutes with our handy scripts

Badly organised photo collections can induce enough stress to make you
sick. Thankfully, Marco Fioretti has found the cure.

N
ot that long ago, photograph collections were made
up of lots of bits of glossy paper with ink on them,
which had been painstakingly amassed over years in

cardboard boxes and professional-looking albums. Nowadays,
the advent of affordable digital cameras means that we can
produce hundreds or thousands of new photos every year.
Despite being digital, all these need to be archived too.

Tools such as Digikam, while powerful, may not be the
most efficient way to start filing all those pictures. Thus, in
this tutorial, I’ll explain a semi-automatic method to rename,
sort and archive photographs to get you going. It’s based on
the ExifTool utility and two simple scripts, all of which are
included on the disc. The only requirement to use them is
very basic knowledge of shell scripting.

What are the scripts for?
My scripts do only a few things, but they’re things that would
consume most of your time if you tried to do them manually.
Firstly, they’ll rename and tag all your picture files by date.
Then they’ll automatically save each picture in a set of folders
that are also arranged by date in a year, month, day hierarchy.
If you want to take this further, the scripts can be use to add
comments, ratings and tags to your photographs. GUI tools
such Digikam are often better for that kind of work, but you
can save a huge amount of time if you start using them after
you’ve pre-indexed your collection.

 This is what you get when you ask ‘friends’ and family to
contribute to your photo collection: a mess!

 ExifTool 8.48
 The scripts

LXF143.tut_exif 92 2/15/11 11:41:17 AM

ExifTool Tutorial

www.tuxradar.com April 2011 LXF143 93

Renaming this mess is our first task, then. After all,
consistent file naming is the basis for efficient and portable
picture management. We have a few criteria for this: foremost
is that you want your pictures to remain individually available
as files in standard formats. Burying photos in the depths of a
database may give better performance in the short term, but
it’s a no-no if you care about making backing them up simple
and future proofing your collection.

For similar reasons, and since files need unique names, we
should avoid characters that aren’t alphanumeric in our
filenames. Descriptive titles are out too – while names such
as Mom.jpg and Mom_graduation.jpg might seem to make
sense today, wait just a few years and you’ll start wondering,
‘Whose mom? Mine or my spouse’s?’

How about progressive numbers, then? No. They’ll stop
being progressive, and thus meaningful, the first time you’ll
have to add some picture to an already existing album. Nope,
the most portable, scalable and future-proof naming scheme
that we know of is simply to give each file a name
corresponding to the exact moment at which the picture was
taken. Filenames in the format YYYYMMDDHHMMSS are
portable; not too long; always sort themselves by date in all
programs, even if you remove or add pictures to a gallery; and
are perfect to make backups from that are sorted
chronologically. Putting all the pictures taken on the same
day or in the same month in one folder with a name such as
Year/Month or YearMonth only makes indexing easier.

With our naming convention established, let’s talk
metadata, that is extra information about each picture.
Metadata can be almost anything, from author and copyright
declarations to camera settings or category labels. There are
three main standards for picture metadata, but here we’ll
focus on a common scenario: pictures in JPEG format with
EXIF (Exchangeable Image File Format) metadata.

In general, photograph metadata can either be kept within
a file (as happens with EXIF) or in a database. The first

 your pictures

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

solution makes sure that metadata isn’t lost if you move your
photographs. The second makes searches and other
operations much faster. Personally, I use both systems
simultaneously. I write metadata in EXIF format inside the
files first, then, when I open my galleries with Digikam, I tell it
to copy all that stuff into its own internal database.

Using the scripts
Now let’s deal with a specific example: the situation you can
see in the screenshot on the previous page. Here, we have a
bunch of images in different formats, all of which are waiting
for order, purpose and identity from you. Note that our start
folder only contains four photo files (plus a text one, whose
purpose will become clear in a moment) for clarity, but the
script would work even if there were thousands. Some of the
images aren’t even photographs, just random screenshots.
I’ve done that on purpose, to prove a point. If you need to, you
can transform any picture file into something much more
usable: a file that any photo manager will handle – metadata
and all – just like a file produced by a digital camera.

Here’s how the script works: to begin with, it puts all the
pictures that need sorting in a directory created just for this
task. Then, and this is the only manual work you need to do,
you must prepare a plain text file called notes_file.txt.

This file is necessary because we’re renaming, sorting and
archiving photographs according to the moment at which
they were created. For digital photographs, that data is
written by the camera in an EXIF tag called DateTimeOriginal.
In all other cases, it up to us to provide an approximate value.
These are exactly what you need to write into notes_file.txt:
$ cat notes_file.txt

joe.jpg | 2001:01:01

Mom.JPEG | 1998:12:01

Mike.png

Dad.tiff | 2005:03:28

As you can see, you just have to write the names of all the
picture files that are in the folder, one per line. You may get
that listing with command like ls -l | cut -c45- > notes_file.
txt. Then, after a pipe character, add the time when that
picture was taken in the YYYY:MM:DD format to each line. If

What about spaces?
The main script explained here will fail if a filename contains spaces or weird
characters. I’ve deliberately avoided this case in the script because, while both
Linux and the shell can handle such characters, avoiding them as a general rule
makes it much easier and faster to write all kinds of cool, advanced scripts.
Therefore, I never generate weird file names on my computer, and rename all files I
get from others as soon as I can. You don’t need to be as extreme yourself, though.
To manage files with weird names, just replace the for PIC... line in my script with
the first four lines of the one you’ll find at: www.cyberciti.biz/tips/handling-
filenames-with-spaces-in-bash.html.

 Digikam has a powerful tagging and metadata interface,
but is the mouse really the only way?

LXF143.tut_exif 93 2/15/11 11:41:17 AM

Tutorial ExifTool

94 LXF143 April 2011 www.linuxformat.com

there are two or more files with the same date, write them on
consecutive lines and only add the date to the first on in the
list. Once everything’s ready, launch the script at a command
prompt, passing the complete path to that directory as the
first and only argument:
$ photo_archiver.sh $HOME/lxf_demo

The script will work on each graphic file as shown in the
flowchart on the right.

Breaking the script down
The first thing that happens is preservation of the original file:
we make a copy to work on. Then, if necessary, that copy is
converted into JPEG format, because we need files that can
store EXIF tags. This step is done by the convert utility, which
is part of the ImageMagick suite (www.imagemagick.org):
convert /tmp/my_tmp_photo /tmp/my_tmp_pic.jpg

Next, we use ExifTool to manage EXIF tags:
1 DATE=`exiftool -s -f -DateTimeOriginal /tmp/my_tmp_pic.

jpg | cut -d: -f2-`

2

3 if [“$DATE” == “ -”]

4 DATE_FROM_NOTES=`$RETRIEVE_DATE notes_

file.txt $PIC`

5 if [“$DATE_FROM_NOTES” == “NO_DATE_FOUND”]

6 then

7 echo “NO_DATE_FOUND for $PIC, sorry!”

8 exit

9 else

10 exiftool -DateTimeOriginal=”$DATE_FROM_

NOTES 12:00:00” /tmp/my_tmp_pic.jpg

11 fi

12 fi

The first line above tells ExifTool to extract the EXIF
parameter called DateTimeOriginal from the JPEG file and
store it, after removing all spaces and unnecessary parts,
inside the $DATE variable. If this operation returns an empty
date, we ask the retrieve_date_from_file.pl script (included
on the DVD) to extract the approximate date from notes_file.
txt. Then we run ExifTool again to write that value inside the
JPEG file. Please note that the script always uses the same
hour (12:00:00).If you want more accuracy, enter more
precise notes in notes_file.txt and modify the second
ExifTool invocation to use them.

Now we have a file, called my_tmp_pic.jpg, that is in JPEG
format and contains a shot date in the DateTimeOriginal EXIF
variable. Then the next part of the script is applied:
1 NEWDATE=`exiftool -s -f -DateTimeOriginal /tmp/my_

tmp_pic.jpg | cut -d: -f2- | tr -d “ :”`

2 PARTIAL_DATE=`echo $NEWDATE | cut -c1-12`

3 SECNDS=`echo “$NEWDATE” | cut -c13-14`

4 mv /tmp/my_tmp_pic.jpg /tmp/$NEWDATE.jpg

5 touch -t “$PARTIAL_DATE.$SECNDS” /tmp/$NEWDATE.

jpg

First, we read the date again, remove all spaces and colons
(note the tr -d command at the end of the first line) and call
the result $NEWDATE. The format of this variable is
YYYYMMDDHHMMSS. The first 12 characters of this string,
which describe the date with one-minute accuracy, go into
$PARTIAL_DATE. The last two, the seconds, go into
$SECNDS. You’ll understand this in a moment.

The reason to generate $NEWDATE is evident in line 4 of
the short listing above: to rename the temporary file as
$NEWDATE.jpg. Line 5 does the last bit of not-so-black
magic: it changes the timestamp of that file to the same
value, using the touch command. Unfortunately, this utility
recognises seconds only after a period. This is why we are
forced to generate $PARTIAL_DATE and $SECNDS
separately. To summarise what happens, after running the
script Mom.JPEG becomes 19981201120001.jpg:
$ ls -l 19981201120001.jpg

-rw-rw-r-- 1 marco marco 61909 Dec 1 1998

19981201120001.jpg

$ exiftool -s -f -DateTimeOriginal 19981201120001.jpg | cut

-d: -f2- | tr -d “ :”

19981201120000

See what I mean? Now we have a file whose name,
timestamp and original date in EXIF format all match! The
last thing the photo_archiver.sh script does is to put each

Never miss another issue Subscribe to the #1 source for Linux on page 66.

How do you remove EXIF data?
Writing comments, tags and other information inside your photographs is,
technically speaking, a very sound strategy. However, from a PR point of view, it
may also be a suicidal one. The reason being that EXIF is a worldwide open
standard and EXIF metadata isn’t encrypted. This means that whoever gets a copy
of your picture can also read all its metadata. Remembering this fact of life will
keep you happy. You’re still entitled to tag your uncle’s portrait as ‘big loser’, but
before sending him that picture by email or uploading it to Flickr, make a copy and
then run the following command, which will erase the content of all its EXIF field:
exiftool -all= uncle_portrait.jpg

Does it have a
JPEG Date tag?

Give the ile a name
and Unix timestamp
identical to the EXIF

date tag

Move the ile to a
folder corresponding

to its date

Write date inside ile
in EXIF format

Read it from
notes_ile.txt

Convert to
JPEG format

 The logic behind our
scripted process is
relatively simple.

Is this a
JPEG ile?

Make copy of the ile

Y

Y

N

N

LXF143.tut_exif 94 2/15/11 11:41:17 AM

ExifTool Tutorial

www.tuxradar.com April 2011 LXF143 95

picture in a folder with a proper name, creating it if it didn’t
already exist:
1 YEAR=`echo $NEWDATE | cut -c1-4`

2 MONTH=`echo $NEWDATE | cut -c5-6`

3 DAY=`echo $NEWDATE | cut -c7-8`

4

5 if [! -d “$BASE_PHOTO_DIR/$YEAR/$MONTH/$DAY”]

6 then

7 mkdir -p $BASE_PHOTO_DIR/$YEAR/$MONTH/$DAY

8 fi

9 mv /tmp/$NEWDATE.jpg $BASE_PHOTO_

DIR/$YEAR/$MONTH/$DAY

The first three lines here split $NEWDATE in its year,
month and day parts. Lines 5 to 7 create the directory if
needed, according to the file date, and move it there. In my
case, 19981201120001.jpg goes inside of $BASE_PHOTO_
DIR/1998/12/01.

Now let’s stand back and admire the results in the
screenshot below. The left-hand pane shows that the script
created the right hierarchy of albums inside $BASE_PHOTO_
DIR (lxf_demo), according to preexisting EXIF tags or the
contents of notes_file.txt. In the central pane, and the
bottom-left corner, you can see that filenames and
timestamps were modified accordingly. Finally, the EXIF panel
on the right shows that Digikam recognises and will display
the original date that the script wrote as EXIF data.

What else should you know?
Attentive readers will have noticed an apparent bug in the
code shown so far. What if there’s more than one picture with
the same value of DateTimeOriginal? Won’t each of them
overwrite the previous one if they all get the same
YYYYMMDDHHMMSS.jpg name? Despair not, take a look
at the screenshot below of the process’s final result and you’ll
notice that there are two files, not just one. That is because
the script does check if a file with a certain name already
exists and, when needed, it does a dirty but effective trick.
Since the filename is an integer, if N.jpg exists, the script
saves the current photograph to N+1.jpg.

Of course, we still live in a universe where valid second
values only go from 0 to 59. What if there are more than 60
pictures with exactly the same value of DateTimeOriginal?
Easy, you end up with all those pictures having the same, valid

Unix timestamp (like 19981201120001.jpg), but only the first
60 will have a filename that’s also a valid timestamp. If this is
a real problem and not just a theoretical one, it is easy enough
to modify the code to have, for example, unique names
thanks to extra suffixes such as 19981201120001.aa.jpg,
19981201120001.ab.jpg…

Finally, JPEG is a lossy format. If you have high quality
photographs, making JPEG versions is extremely convenient,
but you also need to keep each original safe and linked to its
JPEG copy. The way to do this – which is left as an exercise
for you, since there isn’t the space to cover it properly here –
is to rename the raw file with the same YYYYMMDDHHMMSS
string, but keep the original extension.

How to generalise this method
The script I’ve just explained is made possible by one single
thing: ExifTool’s ability to read and write date tags. EXIF
metadata, however, can be used to store much more than
just dates. Since ExifTool supports all EXIF parameters, you
can use it to automatically set any others you desire. For
example you could add a description to a photograph from
the command prompt in this way:
$ exiftool ‘-Description=this, instead, is a caption inserted

with exiftool’ P1090097.JPG

$ exiftool -Keywords=’Montefeltro, family’ P1090097.JPG

The flexibility of ExifTool doesn’t end there. I automatically
added latitude and longitude data to my photographs using
the script from my geotagging tutorial (in LXF112). Now any
software capable of geolocalisation can show where my
pictures were taken on a map. Isn’t ExifTool wonderful? LXF

Stuck?
If you’ve run the script and things aren’t quite as you expected, don’t despair. First
off, Digikam – or any other photo manager with its own database – won’t
necessarily sync the content of EXIF tags straight away. For Digikam, select
Images > Reread Metadata From Images in the main menu to see your changes.

You should also know that both EXIF and Digikam have more than one date tag.
For example, there’s one tag to store the date when a file was last modified. Look
at the EXIF panel in Digikam or in the ExifTool documentation to find out more.
Personally, I have never needed to mess directly with those extra tags. If you want
to process them, however, all you need is to add a few extra lines to the script.

 The end result:
all your files get
decent names,
tags and places.
Life is good!

LXF143.tut_exif 95 2/15/11 11:41:17 AM

