
Android

layouts, creating your own custom attributes, and views
which also contain code logic. Our project to put all this into
practice is a game where the player tips the device to
navigate a little ball around a maze.

Android: Build
a tilting maze

Juliet Kemp has some more fun with the
accelerometer and creates some custom XML attributes.

In the last tutorial, we looked at sensors. This time we’re
going to play about a bit more with the accelerometer,
which is particularly useful if you want to write games.

We’ll also look at more complicated and multi-layered XML

Setting up the maze

accelerometer and creates some custom XML attributes.

 Tutorial code.

112 LXF148 September 2011 www.linuxformat.com

a tilting maze

We want to create a ‘perfect’ maze, with a single path from any
point to any other point, no loops, and no inaccessible
sections. This means that there’s a single path for the player to
navigate, from the entrance (top left) to the exit (bottom right);
the key is not to end up in a dead end.

There are a bunch of different ways to generate a maze but
the algorithm we’re using is ‘depth first’, starting at a given cell
and then traversing the whole of the maze, choosing at
random which walls to knock down to create a path.

We’re using a basic, recursive version of this algorithm;
unfortunately this limits the size of the maze you can generate,
as you run out of stack quite quickly.

If you want to fill the whole device, you’ll also encounter the
problem of differently-sized screens. For now, we’re going to
set the maze size as an absolute. Once again, the orientation is
locked as portrait, with this attribute in the application entity
in AndroidManifest.xml:
android:screenOrientation=”portrait”

To draw the maze, we’re going to use a custom view. Android
best practice is to keep as much layout as possible in XML, so
let’s set up the res/layout/main.xml layout file:
<?xml version=”1.0” encoding=”utf-8”?>
<FrameLayout xmlns:android=”http://schemas.android.com/
apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 >
 <com.example.maze.MazeView
 id=”@+id/maze”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”/>
</FrameLayout>

Add this line to MazeActivity.onCreate, to use the layout:
setContentView(R.layout.main);

On to the MazeView class. Because the constructor is being
called (‘inflated’) from the XML layout, the constructor must
take two specific arguments, (Context and AttributeSet):
public MazeView(Context context, AttributeSet attrs) {
 super(context);

 initVars(attrs);
 initMaze();
 generate(1, 1);
}

We can’t pass the cell width and maze dimensions directly
into the constructor from MazeActivity. Instead, we’ll set
them up as custom XML attributes, and use the initVars(attrs)
method to get the values into the code.

To create a custom attribute, you first need to declare its
format. Create a file res/values/attrs.xml that looks like this:
<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <declare-styleable name=”Maze”>
 <attr name=”cellWidth” format=”dimension”/>
 <attr name=”pixelWidth” format=”dimension”/>
 <attr name=”pixelHeight” format=”dimension”/>
 <attr name=”ballDiam” format=”dimension”/>
 </declare-styleable>
</resources>

The name Maze is arbitrary, as are the attribute names.
Open up res/layout/main.xml again to make two important
changes. First add an extra schema line to the overall layout:
<FrameLayout
 xmlns:android=”http://schemas.android.com/apk/res/
android”
 xmlns:maze=”http://schemas.android.com/apk/res/com.
example.maze”
 ...
>

The xmlns:maze line is important: the final part of that URL
should be the same as the ‘package’ line in your
AndroidManifest.xml (you don’t need to actually create that
URL; it just needs to have the correct structure). Next, in the
same file, add the attributes to the MazeView layout setup:
<com.example.maze.MazeView
 android:id=”@+id/maze”
 ...
 maze:cellWidth=”50px”
 maze:pixelWidth=”300px”
 maze:pixelHeight=”400px”

Juliet Kemp
enjoys fiddling with
code, and has a
bizarre fondness
for alarming neon
colours on
screens.

Our
expert

Android:
PART 4

LXF148.tut_android.indd 112 6/30/11 2:28:17 PM

Android

 maze:ballDiam=”39px”
/>

The first part of each maze:cellWidth attribute name must
be the same as the ID you used in the xmlns:maze line. It’s
important to put the ‘px’ value (pixels); since these attributes
have dimension format, bare integers will throw a compile error.

Now back to the MazeView code to grab these values in
the initVars() method:
private void initVars(AttributeSet attrs) {
 TypedArray a = getContext().obtainStyledAttributes(attrs, R.
styleable.Maze);
 cellWidth = a.getDimension(R.styleable.Maze_cellWidth, 0);
 int pixelWidth = (int)a.getDimension(R.styleable.Maze_
pixelWidth, 0);
 int pixelHeight = (int)a.getDimension(R.styleable.Maze_
pixelHeight, 0);
 a.recycle();
 width = pixelWidth/(int)cellWidth;
 height = pixelHeight/(int)cellWidth;
}

A TypedArray is a container for an attribute array. It’s
important to call recycle() on it once you’re done with it.
obtainStyledAttributes grabs the attributes as defined in
R.styleable.Maze (the ones we set up in attrs.xml) rather than
the whole lot. Then we grab the values we need with the
getDimension method (use the right method for your attribute
type, eg, getString or getColor). We’ll use cellWidth later as a
float, and width and height as ints, hence the casting.

The 0 in the arguments to getDimension is the default
value to use if an attribute is not defined or not a resource. If
the value is 0, though, the maze isn’t going to work very well.
Add this line after a.recycle() to provide basic error-catching:
if (cellWidth <= 0 || pixelWidth <= 0 || pixelHeight <= 0) {
 throw new RuntimeException(“Valid dimensions for the
maze must be passed into this class via XML.”);
}

That’s the layout all set up in XML; now onto the maze logic.
The init() method initialises the maze:

private void init() {
 // border cells have already been visited
 visited = new boolean[width+2][height+2];
 for (int x = 0; x < width+2; x++) {
 visited[x][0] = visited[x][height+1] = true;
 }
 for (int y = 0; y < height+2; y++) visited[0][y] = visited[width+1]
[y] = true;
 // every cell has all its walls intact to start with
 north = new boolean[width+2][height+2];

 // ... east, south, west similarly ...
 for (int x = 0; x < width+2; x++)
 for (int y = 0; y < height+2; y++)
 north[x][y] = east[x][y] = south[x][y] = west[x][y] = true;
 west[1][1] = false;
 east[width][height] = false;
}

You can think of each of the boolean arrays of arrays as a
2D grid which matches the maze grid. To create the ‘border’ of
the maze, the grid is actually set up as having one extra cell all
around it (so it’s two cells wider and two cells taller than the
maze itself, as in the picture below).

The first section of the init() method records the border
cells as having already been visited, so they won’t be iterated
over in the main algorithm. Next, the grids representing the cell
walls are set up. Each grid cell defines whether a particular cell
has that wall or not. So north[1][2]=true would mean that the
cell marked as 1,2 on the picture had its north wall intact.

Finally, we set up the entrance and the exit, by knocking out
the east wall of the top-left-corner cell, and the west wall of the
bottom-right-corner cell.

Dimensions in XML
In the layout in the main text, the
integer dimension values are hard-
coded. This isn’t very maintainable,
especially as we’re going to use those
same values again when we set up the
MazeBall later.

A better solution is to set them up as
dimension resources. Create a file res/
values/dimensions.xml (it must be in
this directory, but the file name is
arbitrary) that looks like this:
<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <dimen name=”cellWidth”>50px</

dimen>
 <dimen name=”pixelWidth”>300px</

dimen>
 <dimen name=”pixelHeight”>400px</

dimen>
 <dimen name=”ballDiam”>39px</

dimen>
</resources>

Yes, that is ‘dimen’, not ‘dimension’ as
in the attribute declaration.

Android will pick up the type of the
resource from the XML; other resource
types include string, integer, boolean,
and color. Check out the developer
documentation for more.

Now edit the lines in res/layout/
main.xml:
maze:cellWidth=”@dimen/cellWidth”

We’ll still retrieve these in the code in
the same way, but this makes the XML
clearer and more maintainable.

Note that you can also grab the
dimension values from the code directly
from their declaration as resources,
using int cellWidth =(int)
getResources().getDimension(R.
dimen.cellWidth);. But it’s better
practice to keep it all in the layout and
to use the code only for the parts that
require logic and/or user interaction.

To make this more
testable, you could
break out the
drawing and the
maze generation
into two separate
classes, and call
one from the other.

Quick
tip

 Maze cells with a border all around.

 A ‘perfect’ maze (generated on the emulator) – it’s
probably the sort that you’re most familiar with.

www.tuxradar.com September 2011 LXF148 113

LXF148.tut_android.indd 113 6/30/11 2:28:18 PM

Android

It’s not easy to find
out what formats
are valid for custom
attributes. The list
is: __reference__, __
string__, __color__,
__dimension__,
__boolean__, __
integer__, __float__,
__fraction__,
__enum__, and
__flag__.
(With thanks to Bill
Woody at http://
chaosinmotion.
com/blog/?p=179)

Quick
tip

The next method, generate, does the bulk of the work.
private void generate(int x, int y) {
 visited[x][y] = true;
 while (!visited[x][y+1] || !visited[x+1][y] || !visited[x][y-1] ||
!visited[x-1][y]) {
 while (true) {
 double r = Math.random();
 if (r < 0.25 && !visited[x][y-1]) {
 north[x][y] = south[x][y-1] = false;
 generate(x, y-1);
 break;
 }
 // see code DVD for the rest of the method
 }
 }
}

The method is called as generate(1,1), so we start off in the
entrance cell on the top left corner, and set that as ‘visited’.
Next, look for any unvisited neighbouring cells. Assuming one
of them is indeed unvisited, pick one neighbour at random
(using Math.random()) and, if it hasn’t been visited, knock
both walls down between these two cells (the one belonging to
the current cell, and the one belonging to the neighbour cell).
Move into the neighbour cell, and run generate() on that cell.
Eventually, this recurses through all of the available cells. Every

cell has been visited, and every cell can be reached from one
cell before it in the generation tree. Thus, there is a tree from
the first cell to any other cell; and specifically, a tree (a path) to
the exit cell.

Finally, we need to draw it on the screen. onDraw is a
method which any View must have, which will be called
automatically whenever the View is drawn or regenerated.
protected void onDraw(Canvas canvas) {
 paint.setColor(Color.YELLOW);
 for (int x = 1; x <= width; x++) {
 for (int y = 1; y <= height; y++) {
 if (south[x][y]) {
 canvas.drawLine(cellWidth*(x-1),
 cellWidth*y,
 cellWidth*x,
 cellWidth*y,
 paint);
 }
 // see code on DVD for other directions
 }
 }
}

Pick any visible colour for your maze, then run through
each cell, drawing any walls it has. To get the pixel location of
each cell, we multiply its grid reference by the cell width.

Moving the ball around

 Our maze with
the ball ready to
go at the start.

114 LXF148 September 2011 www.linuxformat.com

Next, we have to generate the ball and move it around. We
don’t want to redraw the maze background every time the ball
moves, so we use a separate View, MazeBall. The constructor
looks like this:
public MazeBall(Context context, AttributeSet attrs) {
 super(context);
 initVars(attrs);
 init();
}

initVars works in much the same way as the initVars
method in the MazeView class, to get our custom attributes
(here, cell width and ball diameter) from the XML layout. We
want to draw the two views on top of each other, so
res/layout/main.xml should look like this:
<?xml version=”1.0” encoding=”utf-8”?>
<FrameLayout >
 <com.example.maze.MazeView />
 <com.example.maze.MazeBall
 id=”@+id/mazeball”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 maze:cellWidth=”@dimen/cellWidth”
 maze:ballDiam=”@dimen/ballDiam”
 />

</FrameLayout>
This is a good reason to use the dimen resources rather

than hard-coding them in main.xml; they’re used in both the
MazeView and the MazeBall elements.

To initialise the ball, we draw it in the top left corner of the
maze:
private ShapeDrawable ball;
....
private void init() {
 ball = new ShapeDrawable(new OvalShape());
 ball.getPaint().setColor(Color.GREEN);
 ball.setBounds(0, 1, diameter, diameter+1);
}

ShapeDrawables are drawn by creating a bounding box for
them by specifying the top left and lower right corners of the
box, as in the setBounds line here.

Compile and run this and you’ll get a nice maze, with a ball
sitting in the top left corner. Next we need to get the ball to
move around when the device is tilted.

Set MazeActivity up to listen for sensor events, by
implementing SensorEventListener and getting a sensor:
public class MazeActivity extends Activity implements
SensorEventListener
{
 private SensorManager manager;
 private Sensor accel;

 public void onCreate(Bundle savedInstanceState) {

 manager = (SensorManager)
getSystemService(SENSOR_SERVICE);
 accel = manager.getDefaultSensor(Sensor.TYPE_
ACCELEROMETER);
 }

To implement SensorEventListener, we also need to write
onResume, onPause, and onAccuracyChanged methods. As

LXF148.tut_android.indd 114 6/30/11 2:28:18 PM

Android

Final tutorial
Next tutorial, we’ll have a look at the start and end of a
game; on-screen pop-ups; timing and keeping score; fitting
the maze to the screen and making it all a bit smoother and
threading and UI.

The problem with
this code is that
we’re effectively
using the four
corners of the
box bounding the
(round) ball to
check whether
it’s bumping into
walls. This can give
rise to slightly odd
behaviour.

Quick
tip

Remembering the maze
To check whether the ball can be moved in any particular
direction, add a test to the moveBall method:
protected void moveBall(float x, float y) {
 int newX = topX - (int)x;
 int newY = topY + (int)y;
 boolean movable = canBallMove(newX, newY);
 if (movable) {
 topX = newX;
 topY = newY;
 }
 else { // ball stays where it is }
 ball.setBounds(topX, topY, diameter+topX, diameter+topY);
}

The canBallMove method is moderately logically
complicated. We compare the whereabouts of the middle of
the ball (the ‘hotspot’) between the old position and the new:
int newMidX = x + diameter/2;
int newMidY = y + diameter/2;
int oldCellX = (topX + diameter/2)/cellWidth + 1;
int oldCellY = (topY + diameter/2)/cellWidth + 1;
int newCellX = newMidX/cellWidth + 1;
int newCellY = newMidY/cellWidth + 1;

You can get the grid reference (as used in the MazeView
setup) of any given point by dividing its pixel value by the
maze cell width, then adding 1 (since the [0][x] and [x][0]
cells form the borders of the maze).

The next section of the code checks whether any of the
rest of the ball is in a different cell from its hotpoint:
if ((newMidX % cellWidth) + diameter/2 >= cellWidth) {
newCellX++; }
if ((newMidX % cellWidth) - diameter/2 <= 0) { newCellX--; }
... repeat with Y values ...

The % is the modulo divisor, which we use to find out
where in the cell the midpoint is. We can then work out
whether the edges of the bounding box overlap a new cell. If
they do, the next question is whether there’s a wall between:
return !(MazeActivity.maze.isWall(oldCellX, oldCellY,
newCellX, newCellY));

All the cell and wall information is kept in the MazeView,
so we call over to that. (Note that isWall returns true if there
is a wall, whereas canBallMove must return true if there isn’t
a wall. You could rename one of these and have the return
values both be the same, if you prefer.) If the ball is moving
north, west, south or east, it’s easy to check:
if ((oldX == newX) && (oldY == newY)) { wallPresent = false; }

else if (newX == oldX - 1) { wallPresent = west[oldX][oldY]; }
...
else { wallPresent = false; }

The slightly more complicated part involves checking the
diagonal corners. As in the picture, if a ball is moving
diagonally north-east, there might be no wall to the north or
east of that cell, but walls at the corner-adjacent cell. We need
to check for those as well. Here’s a sample of that code
(check out the disc for the remainder):
if ((oldX != newX) && (oldY != newY)) {
 if ((newX == oldX + 1) && (newY == oldY + 1) &&
 (north[newX][newY] || west[newX][newY])) {
 wallPresent = true;
 }
}

If the new cell that the ball is heading into is south-east of
the old cell (remember that on this grid, we count down and
right from the origin in the top left corner, to match up with
the Android 2D co-ordinates), we check the north and west
walls of this new, diagonally adjacent, cell.

The same check is then repeated for the other three
diagonally-adjacent cells. Once all that’s returned,
canBallMove also returns true or false, and the ball moves
accordingly. Compile and run, and you should see the ball
stopping whenever you tilt it into a wall. LXF

 There’s a wall
where the red ring
is, but no wall to
the north or east
of the ball.

www.tuxradar.com September 2011 LXF148 115

these were covered in the last tutorial, we won’t go into them
here – check out the code on the disc to see them.

The onSensorChanged method is the one that picks up
the sensor values and does something with them. Declare
the MazeBall private variable at the top of the MazeActivity
class, then add a line to onCreate to grab the View.
private MazeBall ball;
...
//in onCreate
ball = (MazeBall)findViewById(R.id.mazeball);

The onSensorChanged method itself is straightforward:
public void onSensorChanged(SensorEvent event) {
 ball.moveBall(event.values[0], event.values[1]);
 ball.invalidate();
}

The first line passes the X and Y sensor values across to

the moveBall method, and the second line kicks off the
redrawing of the MazeBall view. Note that we don’t touch the
maze itself.

The moveBall method in MazeBall moves the ball’s
bounding box according to the values passed in:
protected void moveBall(float x, float y) {
 topX = topX - (int)x;
 topY = topY + (int)y;
 ball.setBounds(topX, topY, diameter+topX, diameter+topY);
}

Compile with ant debug, plug your device into the USB
port with USB debugging turned on, and install the app with
adb -d install -r bin/maze-debug.apk to try it out.

We’re still missing one more step. You can now tilt the ball
around the screen, but it doesn’t react to where the walls of the
maze are; it just floats over them.

LXF148.tut_android.indd 115 6/30/11 2:28:19 PM

