
Android

4 Coding Academy August 2011 www.linuxformat.com

 Code and all the
previous tutorials

different directions – and, when you move the phone
around in these ways, it means that you can get your code to
work differently.

The Android API includes a bunch of different sensors
which gather this information, and which you can use to
inform your code, and this tutorial is going to look at the
gravity sensor – and its relation to the accelerometer. But
first, a closer look at Android graphics.

Let’s get moving

Juliet Kemp shows you how to make the most of your phone’s
‘mobile’ nature by coding a simple spirit level app.

In the previous two parts of this tutorial, we looked at
setting up a fairly basic Android program, displaying
information, and getting some user input. We also

covered a few parts of the fairly extensive Android API.
This time, we’re going to start looking at some of the

really neat aspects of writing code for a portable device.
Unlike a desktop, or even a laptop PC, phones are very

mobile. You can shake them around and turn them in

Juliet Kemp
found moving a
bubble around a
screen to be a
surprisingly
satisfying
experience.

Graphics
In previous tutorials we used View objects to
display and arrange information on the screen.
Views are the basic building blocks of the user
interface, handling drawing and events within a
rectangular part of the screen. You can set up
trees and hierarchies of Views to create more
complicated layouts, and you can show
drawings and animations by placing them into
a View object, but Views are only really suitable
for static content.

If you’re writing an app with graphics which
need to respond regularly to user interaction –
for example if your screen will be regularly
redrawing – a better option is to use a Canvas.
A Canvas provides an interface between you
and the bitmap which will actually be drawn
onto the area controlled by it. In this tutorial
we’ll create a spirit level app, which redraws
itself when the user tilts the device, so a
Canvas is the best option.

Two basic ways to use a Canvas:
1 Create your own custom View component,

and handle the redrawing via this. This
option is fine if the app doesn’t require a lot
of processor power, and doesn’t need to
redraw itself very quickly.

2 Use a separate thread and a SurfaceView.
This can redraw the screen as fast as the
thread will go, so this is good for apps which
need a fast response.

The spirit level app doesn’t need to redraw
itself at high speed, so in this case, we’ll
use the first option, and create a custom
View component.

To set up the new project, type:
android create project --target android-10
--name spiritlevel \\
--path ~/android/spiritlevel --activity
SpiritLevelActivity \\
--package com.example.spiritlevel

(See previous tutorials, or the Android
online docs, for more explanation.) Note that
this time, we’re developing against Android
2.3.3 (API level 10), as the gravity sensor was
only introduced in API level 9.

The first step is to set up our custom View,
which will draw the basic spirit level outline.
Not all the code will be included in the text so
see the coverdisc for the full listing. The code
for this first pass of the graphics setup, which
we’ll improve later in the tutorial, is saved as
SpiritLevelDrawableViewOne.java, so you’ll
need to rename it SpiritLevelDrawableView.
java for it to compile properly.

The code for the outer box of the spirit level
looks like this:
public class SpiritLevelDrawableView extends
View {
 private LayerDrawable layer;
 public SpiritLevelDrawableView(Context
context) {
 super(context);
 int outerX = 80;
 int outerY = 50;
 int outerWidth = 150;
 int outerHeight = 300;
 ShapeDrawable outer = new
ShapeDrawable();
 outer.getPaint().setColor(0xFF9933FF);

 outer.setBounds(outerX, outerY, outerX +
outerWidth,
 outerY + outerHeight);
 layer = new
LayerDrawable(new Drawable[] {outer});
 }
 protected void onDraw(Canvas canvas) {
 layer.draw(canvas);
 }
}

A Drawable object is a catch-all class for
‘something that can be drawn’; it’s extended
to classes like ShapeDrawable and
LayerDrawable to define more specific things.
You can also extend it yourself to create your
own custom drawable objects.

The new ShapeDrawable variable, outer
(the outside of the spirit level) will be
constructed using the default of a RectShape,
since the constructor has no other argument.

Next, we set the colour, using an RGB
value, then the shape’s boundaries. See the
boxout for more on colour – this one is a
pleasingly garish purple, but you might have
something more soothing in mind.
ShapeDrawable will draw the Shape it has
constructed (here, the default RectShape)
to the boundaries provided by the
setBounds method.

This means giving the x and y coordinates
of the shape’s top left corner, and then the x
and y coordinates of its bottom right corner.
Basically, you specify a rectangle on the
screen, and the ShapeDrawable is drawn
within that.

Let’s get moving
Our
expert

PART 3

LXF147.sup_android 4 6/1/11 11:42:26 AM

Android

www.tuxradar.com August 2011 Coding Academy 5

On the Android screen, 2D coordinates start from the top left
corner of the screen and are measured in pixels. This is the
case whether the display is in portrait or landscape, but which
physical corner of the screen the ‘top left’ one is, will of course
change depending on which way you hold your phone.

For this app, we’ll want to lock the orientation so that
turning the phone around doesn’t move the spirit level. This
also means that we don’t need to worry about coding our
layout to behave well when the screen orientation changes.

To do this, edit AndroidManifest.xml to add a screen
orientation attribute to the activity element:
<activity android:name=”SpiritLevelActivity”
 android:label=”@string/app_name”
 android:screenOrientation=”portrait”>

The setBounds(Rect bounds) method is a method on
ShapeDrawable, inherited from Drawable. Once outer is
fully defined, the next step is to create a LayerDrawable. If we
only needed to draw the single rectangle of outer, this
wouldn’t be necessary, but as we’ll also want an inner box
(for the spirit level bubble to bounce around in) and the
bubble itself, the best bet is to use a LayerDrawable,
constructed from an array of Drawable objects. It’s declared
as a class variable because we’ll revisit it later in the code. The
contents of the LayerDrawable are drawn on top of each
other in order, the first element of the array first.

Bubble building
Finally, a View needs an onDraw method to define what
happens when it is drawn. Here, that’s straightforward: just
use the draw method of the LayerDrawable:
protected void onDraw(Canvas canvas) {
 layer.draw(canvas);
}

Check the code on the disk for the inner box (the ‘liquid’ of
the spirit level, that the bubble floats within). For the bubble,
we’ll use an OvalShape, and define its bounds as a square, to
produce a circle:
bubble = new ShapeDrawable(new OvalShape());
bubble.getPaint().setColor(0xFF000000);
bubble.setBounds(bubbleX, bubbleY, bubbleX +
bubbleDiam,
 bubbleY + bubbleDiam);
layer = new LayerDrawable(new Drawable[] {outer, liquid,
bubble});

Now the custom View is set up, the main application
method, SpiritLevelActivity, needs to use it:
public class SpiritLevelActivity extends Activity
{
 SpiritLevelDrawableView spiritlevelView;
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 spiritlevelView = new
SpiritLevelDrawableView(this);
 setContentView(spiritlevelView);
 }
}

Compile your activity with ant debug, fire up android and
start a test device, install the new code with ant install -rbin/
spiritlevel-debug.apk, and give it a go. Behold! A very basic
graphical spirit level. Which so far, of course, does absolutely
nothing of any interest. On to the next bit of the code...

Android devices come in many different sizes and screen
densities; so in general it’s not a good idea to hard-code pixels

like this in your graphics code. There are a couple of ways
around this, including the use of dp (density independent
pixels) units, using XML layouts, and providing alternative
bitmaps for different screen densities. We’ll look at some of
these in later tutorials. One quick way to make things scale
about right on different screens is to set android:anyDensity
in your AndroidManifest.xml file:
<manifest ... >
 <supports-screens android:anyDensity=”false” />
</manifest>

This means that the system scales any absolute pixel
coordinates at runtime, rather than pre-scaling them,
according to the reported screen density. For now, it’s a quick
way to minimise problems; but you shouldn’t release code
into the wild with hard-coded pixels.

Using colo(u)r
Colours in Android are defined as
packed ints, with four bytes, one each
for alpha (transparency), red, green
and blue, each in hex. An alpha value of
FF is opaque (so 00 would be entirely
transparent). Opaque red would be
0xFFFF0000; opaque black
0xFF000000.

The Color class gives you a few
constants, such as Color.BLACK and
Color.YELLOW, but that’s a pretty
limited colour palette, so you’ll probably
want to make at least some use of the
packed integers.

However, having bare ints like this
in code isn’t a great idea – it’s not
very maintainable. Instead, you can
store your color definitions in a
resources file, such as res/values/
colors.xml (the filename doesn’t
matter, although it does need to be in

the res/values/directory):
<?xml version=”1.0”

encoding=”utf-8”?>
<resources>
 <color

name=”brightpurple”>#ff9933ff</color>
 <color

name=”brightyellow”>#ffffff00</color>
</resources>

You can then refer to these resources
in your code like this:
Resources res = getResources();
outer.getPaint().setColor(res.getColor(R.

color.brightpurple));
If you’re using one of the colours

that does have a constant from Color
assigned to it, it’s good practice (and
saves code lines) to use that instead of
self-defining your colour:
bubble.getPaint().setColor(Color.

BLACK);

 Calculating your graphics values.

If adb says ‘device
offline’ the first time
you try to install
your test code, just
run it again.

Quick
tip

LXF147.sup_android 5 6/1/11 11:42:28 AM

Android

6 Coding Academy August 2011 www.linuxformat.com

When the device
is at rest, the
output of the
accelerometer
and the gravity
sensor should be
identical. So if you
want to test this
code on a device
running Android
2.2 or earlier, which
doesn’t have a
gravity sensor,
just swap TYPE_
ACCELEROMETER
for TYPE_GRAVITY
in the code, and
make sure you hold
it still when testing.

Quick
tip

Android has a bunch of different hardware sensors:
accelerometer, gravity, gyroscope, light, linear acceleration,
magnetic field, pressure, proximity, rotation vector and
temperature. Each can be represented by the Sensor class,
and accessed by the SensorManager class. Sensor events
are represented by the SensorEvent class, which holds data
(including timestamp and accuracy) about each sensor event.

The SensorEvent class uses a different set of coordinates
from the 2D graphics engine. The origin is in the middle of the
screen; the x-axis is horizontal (across the screen) and points
right; the y-axis is vertical (up and down the screen) and
points up; and the z-axis runs through the middle of the
phone and points outwards from the front of the screen.

To see how the Sensor, Management, and Event classes
work together, let’s set up the gravity sensor:
public class SpiritLevelActivity extends Activity implements
SensorEventListener {
 private SpiritLevelDrawableView spiritlevelView;
 private SensorManager manager;
 private Sensor gravity;
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 spiritlevelView = new
SpiritLevelDrawableView(this);
 setContentView(spiritlevelView);
 manager = (SensorManager)
getSystemService(SENSOR_SERVICE);
 gravity = manager.getDefaultSensor(Sensor.TYPE_
GRAVITY);
 }

The first section of the code sets up the custom View.
Then the getSystemService method (inherited from the
Activity class) gets the sensor manager service, which we
can then use to get a gravity sensor.

Talking sensors
You could leave the sensors on all the time, but that uses up
the battery alarmingly fast. It’s good practice to turn them off
when the activity is paused, and pick them back up on resume:
 protected void onResume() {
 super.onResume();
 manager.registerListener(this, gravity,
SensorManager.SENSOR_DELAY_GAME);
 }
 protected void onPause() {
 super.onPause();
 manager.unregisterListener(this);
 }

Alternatives for the sensor delay rate are SENSOR_
DELAY_NORMAL and SENSOR_DELAY_FASTEST, but this
one should work OK for our purposes. Finally, we need to do
something when the sensor data changes:
 public void onSensorChanged(SensorEvent event) {
spiritlevelView.invalidate();
 }

All this does is redraw the spirit level View. Which is great,
but what we want is for that View to reflect the data coming in
from the sensor, which right now it doesn’t. So the next step
is to grab that data and to do something useful with it.

The sensor returns an array of three values, representing a
3D vector (x, y, z) showing the direction and magnitude of
gravity. First, let’s ignore the x-value and look only at tilt in the
y direction (tilt up and down; the x-direction is side-to-side).

If the device is lying absolutely flat, then gravity acts
straight down the z-axis, meaning that the z-value is 9.81
(9.81m/s^2, the magnitude of gravity on the Earth), and the y
value is zero. If, on the other hand, the device is balancing on
its top edge, the gravity runs straight along the y-axis, so the
y-value is 9.81 and the z-value is zero. If the device is
anywhere between those two states, then y and z will be
somewhere between those two sets of values.

The easiest option is to map the y-value directly onto the
location of the bubble, and redraw it accordingly as the
device’s gravity alignment changes.

Let’s put a method into SpiritlevelDrawableView to do
that. First, we’ll have to move all the bubble’s dimensions
outside the main method, so that we can change them from
the moveBubble() method. This defines the bubble’s default
position, in the centre of the inner box. Now, create a new
moveBubble() method:
protected void moveBubble(float gravY) {
 bubbleY = bubbleOrigY - (int) (gravY * 5);
}

and redraw the bubble in the onDraw() method (this is called
when invalidate() is called on the View):
 protected void onDraw(Canvas canvas) {
 bubble.setBounds(bubbleX, bubbleY, bubbleX +
bubbleDiam,
bubbleY + bubbleDiam);
 layer.draw(canvas);
 }

In moveBubble, the sensor value is passed in as a float,
but must be cast to an int before saving it in bubbleY, as the
setBounds method called in onDraw requires ints.

Also, because the y-axis for the graphics goes up in value
as you move down the screen, to get the bubble moving in the
correct direction, the gravity value must be subtracted from
its origin. (Feel free to experiment with this to find out for
yourself.) Finally, multiplying by five gives us more

 Testing the spirit level.

LXF147.sup_android 6 6/1/11 11:42:28 AM

Android

www.tuxradar.com August 2011 Coding Academy 7

Next time
Over the next few tutorials, we’ll look at the Android UI, and
using the touch-screen interface; graphics, screen layout,
and games; handling threading in Android; and the
accelerometer and other hardware sensors.

movement in the bubble – as the sensor value has a min of 0
and a max of 9.81, moving the bubble by only those bare
values would make for a very small movement (only 10 pixels
in either direction).

Values and logging
To find out what values the sensors are returning, and to
experiment with pixel values for drawing, you might want to
try some logging and debugging. To add a log line in your
code, use this:
/* this line at top of class */
private static final String TAG = “SpiritLevelActivity”;
/* this line where you want your debugging */
 Log.i(TAG, “onSensorChanged() “ + event.values[0] + “ “ +
 event.values[1] + “ “ + event.values[2] + “
“ + gravY);

Fire up ddms from the command line, and run your app. In
the left-hand pane of ddms, you’ll see process info for any
devices and emulators you have hooked up. Click on the
device you want to debug, run your activity, and debugging
info will appear in the pane at the bottom. This is obviously
particularly handy if you’re experiencing run-time crashes, as
it’ll give you a stack trace.

Now we’ll get back to the SpiritLevelActivity class. Grab
the sensor information when the sensor changes, call this
method, then redraw the View:
public void onSensorChanged(SensorEvent event) {
 spiritlevelView.moveBubble(event.values[1]);
 spiritlevelView.invalidate();
}

Unfortunately, you can’t use the device emulator to test
this stuff, as it doesn’t provide fake sensor data. You’ll need to
hook your device up to your laptop and test that way. See the
last tutorial, or http://developer.android.com/guide/
developing/device.html for details.

Once the y-values work, you can put in very similar code
for the x-values; although in this case, you should add rather
than subtract the gravity value in moveBubble() to get
movement in the correct direction:
bubbleX = bubbleOrigX + (int) (gravX * 5);

Calculating graphics
At this point, there’s still quite a lot of hard-coded graphics
values, and they’re mostly calculated by trial and error. While
we won’t take all of the pixel values out, we can make it all fit
together a little bit better.

The liquid box needs to have enough room for the
bubble to move around in, but no more than that – when
the phone is tipped all the way in one direction, the bubble
should be at the very end of the box (exactly as you would see
with a real spirit level).

Happily, we know exactly how much the bubble will move
in each direction: the maximum possible of the raw gravity
value (gravX or gravY), multiplied by five as our magnifying
factor. It’s bad practice to have the magnifying factor in the
code, as well, so:
private static final double WIDTH_MAGNIFY = 1.5;
private static final double HEIGHT_MAGNIFY = 3;
[...]
int liquidWidth = (int) ((SensorManager.STANDARD_
GRAVITY
 * WIDTH_MAGNIFY * 2) + bubbleDiam + 0.5);
int liquidHeight = (int) ((SensorManager.STANDARD_
GRAVITY
 * HEIGHT_MAGNIFY * 2) + bubbleDiam + 0.5);

I think these values for the WIDTH_MAGNIFY and
HEIGHT_MAGNIFY constants look best onscreen, but you
can of course change them as you prefer. SensorManager.
STANDARD_GRAVITY does exactly what you’d expect:
provides the standard gravity value, which is the maximum
you’ll get for gravity in either direction. As well as allowing for
the movement, there also needs to be room for the bubble
itself; and the 0.5 ensures that any decimal value will be
rounded up rather than down.

Similarly, we can use the hard-coded pixel values for the
outer case of the spirit level to define the top-left x and y
coordinates of the liquid and the bubble:
int liquidX = outerX + (outerWidth-liquidWidth)/2;
int liquidY = outerY + (outerHeight-liquidHeight)/2;
bubbleX = bubbleOrigX = outerX + (outerWidth/2) -
(bubbleDiam/2);
bubbleY = bubbleOrigY = outerY + (outerHeight/2) -
(bubbleDiam/2);

This will centre the liquid and the bubble in the middle of
the outer case. The moveBubble and onDraw methods will
then move the bubble around from there.

Recompile, install, and try it out, and you should see the
little bubble moving around the screen as you tilt the phone.
Add some graphics to draw a cross centred in the liquid box,
and see if you can put a shelf up straight with it! LXF

 The axes of the Android sensors.
You can easily
drop a pre-created
image file into
your application
by saving it (as a
PNG or JPG) in
res/drawable and
then referring to it
with the resource
ID R.drawable.
filename (no
extension).

Quick
tip

LXF147.sup_android 7 6/1/11 11:42:29 AM

