
Android

8 Coding Academy July 2011 www.linuxformat.com

Previous parts on the DVD

Our
expert

 menu.add(Menu.NONE, SETTINGS_MENU_ID, Menu.
NONE, R.string.menu_settings);
 return true;
}

The first line calls up to the method used by this class’s
superclass to create an options menu (which, helpfully, does
most of the hard work for us). Then we add our single menu
item. The first argument is a group ID (NONE here, which has
the value 0, because we don’t need to set up a group). The
second is an identifier for the menu item, which we set as a
constant at the top of the file:
private static final int SETTINGS_MENU_ID = Menu.FIRST;

As with Menu.NONE, this uses a constant (the first menu
item) for portability and maintainability.

The third parameter sets the order for the item, which we
don’t set here, as we don’t care about the order that our
single item appears in. The final parameter is a string
resource reference for the label of the item (see boxout).
That’s it; we now have a single menu item.

Next, we need a method to handle what happens when
the item is selected; we want to fire up a ringtone picker:
@Override public boolean onMenuItemSelected(int id,
MenuItem item) {
 switch(item.getItemId()) {
 case SETTINGS_MENU_ID:
 chooseRingtone();
 return true;
 default:
 // we don’t have any other menu items
 }
 return super.onMenuItemSelected(id, item);
}

Again, this is pretty straightforward, using a switch
statement to look at the item ID and act accordingly. There’s
only one case here, as we have only one menu item, but it’s
good coding practice to set up a default and comment if (as
here) it does nothing. Finally, the method that does the work:
private void chooseRingtone() {
 Intent i = new Intent(RingtoneManager.ACTION_
RINGTONE_PICKER);
 startActivityForResult(i, PICK_RINGTONE_REQUEST_ID);
}

See the boxout for more on actions and intents.
RingtoneManager is one of the Android classes, and does
what it says on the tin. The ACTION_RINGTONE_PICKER
value is a static value that identifies what we want our new
activity to do: pick a ringtone for this application.

But what do we do when the result comes back? This is

Android: Menus
and ringtones
Last month Juliet Kemp demonstrated how to set up, produce and test a
basic countdown timer app. Now we’re ready to make it do a little bit more...

This month we’re going to expand the code we wrote in
last month’s tutorial to create a basic countdown
timer, add a few more bells and whistles, and explore

further what you can achieve with Android.
Even if you didn’t read the last tutorial, you should still be

able to follow this one if you have any familiarity with Java.
The code is on the coverdisc, so not all of it will feature in

the article (Java can be pretty verbose at times). In particular,
if you have compile issues, make sure you’ve imported all the
necessary classes at the top of each source file.

For more information on setting up an Android dev
environment and on the basics of Android projects, check out
either the previous tutorial in this series, or the
(comprehensive) online Android docs – that’s also the place
to go for more detailed information about any of the classes
and structures in this tutorial. Onwards!

What’s on the menu?
The first thing we’re going to do is add a menu, so that
something happens when you click the Menu button. Later
on we’re going to add a ringtone that goes off when the
countdown finishes, so the menu option will be to pick the
ringtone you use.

For an options menu (a menu accessed by hitting the
Menu button), there’s no initial setup needed in the onCreate
method; every Activity supports this sort of menu by default.
Just add this method into the CountdownActivity class:
@Override public boolean onCreateOptionsMenu(Menu
menu) {
 super.onCreateOptionsMenu(menu);

 The emulator’s
ringtone picker
only has two
options; if you
test the app on
your phone you’ll
see a wider range
of ringtones.

Juliet Kemp has
spent a lot of time
this month waiting
for the Android
emulator to fire up,
so was particularly
pleased to get her
phone set up for
testing instead.

LXF146.sup_android 8 5/4/11 12:26:35 PM

Android

www.tuxradar.com July 2011 Coding Academy 9

handled by the onActivityResult method, which will be
discussed in the next section; for now, we’ve fired the activity
off with an intent and a request ID to identify it when it
returns, and the first half of the menu is done.

You can, of course, add lots more menu items if you can
think of things you want to do with them.

A step further...
In last issue’s app, everything happened inside a single
‘activity’. However, most Android apps have multiple activities,
which talk to each other using intents. The boxout over the
page explains how all of this fits together.

This time, instead of having a text box to enter the
countdown time in, we’re going to start a new activity to
provide a scroller widget for the user to pick the number. To
start this activity, there is a button that the user can click, and
the code in CountdownActivity to set up that looks like this:
Button pickButton = (Button) findViewById(R.id.pickbutton);
pickButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Intent i = new Intent(context, CountdownEnterTime.class);
 startActivityForResult(i, PICK_TIME_REQUEST_ID);
 }
});

As with the menu item we want to get a result back from
the activity, so it needs both an intent and a request ID (set up
at the top of the class). The intent identifies which class the
activity to be called is in, and the ID allows us to work out
which request we’re getting a result back from in due course.

Before looking at how we deal with the activity result, let’s
create CountdownEnterTime, to generate that result. Check
the code listing on the coverdisc for the full details of the
class, as I won’t list it all here, but the first part is the spinner
to pick the number:
Spinner spinner = (Spinner) findViewById(R.id.spinner);
ArrayList<Integer> spinnerList = new ArrayList<Integer>();
for (int i = MIN; i <= MAX; i++) { spinnerList.add(i); }
ArrayAdapter<Integer> adapter = new ArrayAdapter(context,
 android.R.layout.simple_spinner_item, spinnerList);
adapter.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
spinner.setAdapter(adapter);
spinner.setOnItemSelectedListener(new
OnItemSelectedListener() {

Android: Menus
and ringtones

 @Override
 public void onItemSelected(AdapterView<?> parent,
 View view, int pos, long id) {
 secondsPicked = (Integer)parent.getItemAtPosition(pos);
 }
 public void onNothingSelected(AdapterView parent) {
 // Do nothing.
 }
});

The spinner view is set up in the layout resources file (at
res/layout/picktime.xml). A spinner needs an ArrayAdapter
to translate between itself (displaying the data) and the
backend array which holds that data. On this occasion, the
data is an array of numbers (number of seconds to count
down), so it’s handled by an integer ArrayList.
android.R.layout.simple_spinner_item is to stock Android
layout resource that sets up a spinner layout for us; similarly
with android.R.layout.simple_spinner_dropdown_item.

After connecting the Spinner, ArrayList, and ArrayAdapter
together, the next step is to define what happens when an
item is picked. All we want to do is store it in our class value
secondsPicked. Note that if nothing is selected, the class
does nothing; it’s good practice always to comment if you’re
not doing anything with a method, just so that it’s clear that
you’ve done so deliberately.

After it’s been picked, this value has to be passed back to
the original activity, so it can be used for the countdown. For
this, we set up a couple of buttons, OK and Cancel, whose
onClick methods deal with packaging up the return info.
Button okButton = (Button) findViewById(R.id.okbutton);
Button cancelButton = (Button) findViewById(R.id.
cancelbutton);
okButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 Intent i = new Intent();
 Bundle bundle = new Bundle();
 bundle.putInt(CountdownActivity.SECONDS_KEY,
secondsPicked);
 i.putExtras(bundle);
 setResult(RESULT_OK, i);
 finish();
 }

I’ve built this code
against Android 2.2,
but it should also
compile on 2.3.*
and even 3.0.

Quick
tip

Strings and resources
If you’re referring to fixed strings in your
Android code, it’s best practice to use
resource references to refer to them,
rather than specifying them inline in the
code. That way, if you want to change
them it’s easy to find them, and you’re
set up for localisation at a future time.

String resources are kept in the res/
values/strings.xml file, and each entry
in the file is an XML entity that looks like
this:
 <string name=”countdown_
during”>counting down:</string>

To refer to this string in your code,
use R.string.countdown_during.

In fact, that resource reference isn’t
itself a string; instead, it’s an integer
that Android uses to locate the
required string in the strings.xml file.

Most of the time, the substitution is
seamless, so you can just treat a
resource reference to a string as if it
really were a string.

However, if you want to add two
strings together, you’ll need to do the
conversion explicitly, as in the onTick()
method in the showTimer() method:
 countdownDisplay.setText(getString(R.
string.countdown_during) + seconds_
left);

Android resource reference strings
also don’t keep spaces at their ends
(though they will in the middle). If you
want a space at the end, use \u0020
(the Unicode character for a space) at
the end of the string, like this:
<string name=”countdown_

during”>counting down:\u0020</string>

 Picking a seconds value from the spinner. Spinners can
also take text data.

LXF146.sup_android 9 5/4/11 12:26:36 PM

Android

10 Coding Academy July 2011 www.linuxformat.com

Android is designed to be modular, so that apps
can hook into parts of other apps, minimising
coding effort and component reuse.

Any app will have a default start point, but
you can also jump into the app at other
points by passing in the correct information
(using an intent).

There are four basic component types:
 Activities provide a screen and user interface

for a particular app or action. Most apps have
multiple activities for their different aspects. Our
Countdown app has an activity that runs the

countdown itself, and another activity where
the user picks the countdown time. The
activity’s visual content and user interface is
provided by a ‘view’, which stores the layout of
the app’s UI.

 Services don’t have a visual interface, but
instead run in the background (eg playing
music, or checking for email). A service will
usually keep running after the user has
navigated away from the application. Other
components can bind to the service to
interact with it.

 Broadcast Receivers receive and react to
broadcast announcements, usually from the
system itself. A broadcast receiver might start
an activity in response to a particular system
announcement.

 Content Providers are used to make some of
the application’s data available to other apps.
Activities, services, and broadcast receivers are
activated by ‘intents’, which carry messages
between components at run-time. The code in
this tutorial uses intents to communicate
between its two activities.

 countdownMillis = extras.getInt(SECONDS_KEY);
 countdownDisplay.setText(Long.
toString(countdownSeconds));
 break;
 case PICK_RINGTONE_REQUEST_ID:
 Uri uri =
 i.getParcelableExtra(RingtoneManager.EXTRA_
RINGTONE_PICKED_URI);
 ringtone = RingtoneManager.getRingtone(context, uri);
 break;
 default:
 // do nothing; we don’t expect any other results
 }
 }
}

First, check for the RESULT_CANCELLED static value.
This will be the same for any activity that’s been called, and
will always be treated the same: ignore and return. If we get
past this stage, we assume that the result is OK; the assert
statement makes this clear to anyone reading or maintaining
the code. If any other return value comes back, the app will
throw an error.

The switch statement means that this same method
could deal with any one of numerous activities that might be
called from this activity. We’ve got two: the time picker, and
the ringtone picker. So, if it’s the PICK_TIME ID that shows
up, the value that was stored under SECONDS_KEY in the
bundle is extracted.

The countdownDisplay line is just for ease-of-use; it
shows the user the value that they’ve chosen, so they know
that the right thing has happened. The other possible return
value is from the ringtone picker. Ringtones are identified by a
URI, and there’s a static variable, EXTRA_RINGTONE_
PICKED_URI that identifies the ringtone that was picked. The
code extracts the URI from the bundle, then gets the ringtone
and stores it in the ringtone member variable.

Now on to the actual timer...

Make some noise
The countdown timer itself is largely the same as in the last
tutorial, using the Android-provided CountDownTimer class
to change the text shown on every tick of the timer, and then
show something at the end.

However, this time we’re also going to make a noise when
it rings. As discussed above in the menu, there’s a
RingtoneManager to deal with system ringtones, so again, a
lot of the heavy lifting is done for us by the Android
framework. The lines to add are in the onFinish() method
within showTimer() (see the code on the coverdisc for the

});
cancelButton.setOnClickListener(new View.
OnClickListener() {
 public void onClick(View view) {
 Intent i = new Intent();
 setResult(RESULT_CANCELED, i);
 finish();
 }
});

A bundle is used to store information in an intent, to be
passed between activities. The OK button onClick method
sets up an intent and a bundle, stores the secondsPicked
value in the bundle, stores that in the intent, and sets the
intent as the result of the activity. The Cancel button is more
straightforward, as no secondsPicked value needs to be
returned, so there’s no bundle.

Meanwhile, back in CountdownActivity... we need to do
something with this result that CountdownEnterTime has
passed back in. To do this, we add this method at the end of
the class:
@Override protected void onActivityResult(int requestCode,
int resultCode, Intent i) {
 super.onActivityResult(requestCode, resultCode, i);
 if (resultCode == RESULT_CANCELED) {
 return;
 }
 assert resultCode == RESULT_OK;
 switch(requestCode) {
 case PICK_TIME_REQUEST_ID:
 Bundle extras = i.getExtras();

 Ready to start
the countdown.
Note the ‘stop’
button as well as
the ‘start’ button.

Activities, intents and views

LXF146.sup_android 10 5/4/11 12:26:37 PM

Android

www.tuxradar.com July 2011 Coding Academy 11

If you have
problems with the
emulator ringtone
setup – or any
other problems
with the emulator
– it’s surprisingly
easy to set up a real
phone to do testing
on via USB.

Quick
tip

Next time!
Next time, we’ll find out a bit more about graphics and how
views work. We’ll also have a play with the gyroscope – one
of the fun parts of coding for a phone!

Ringtones on the emulator
If you try to run this code on the
emulator, you’ll get an error, and
running ddms (the debugger) to find
the error will show you this:
 MediaPlayerService: Couldn’t open fd
for content://settings/system/ringtone

This is because there are no
ringtones loaded on the emulator. To
get rid of this, fire up ddms while the
emulator is running, and go to Device >
File Explorer. Go to /mnt/sdcard/, and
hit the Push button to choose an MP3
file to load onto the SD card. You may
find that the permissions for this are
incorrectly set. In this case, open up a
terminal, and type:
$ mksdcard -l e 512M mysdcard.img

 $ emulator -avd MyAVD2.2 -sdcard
mysdcard.img

which will restart the emulator with
the named AVD and your new SD card.
You may at this point be able to use
ddms to push the file on; if not (I still
had problems with mine), go back to
the shell and instead use:
$ adb push myfile.mp3 /sdcard/

Restart your emulator (on the
command-line, as above), and open the
Music application. Navigate to the song
you just added, long-click on it, and
choose Set As Ringtone. You’ll now be
able to run the app on the emulator
without a crash. You may need to reset
the ringtone every time you restart.

full listing):
public void onFinish() {
 countdownDisplay.setText(R.string.countdown_finish);
 if (ringtone == null) {
 ringtone = ringtoneMgr.getRingtone(context,
 android.provider.Settings.System.DEFAULT_RINGTONE_

URI);
 }
 ringtone.play();
}

The text is set as before, with a resource reference. If the
ringtone is null (for example, it hasn’t been set via the menu
item), it’s set to be the current default ringtone (without this,
the app would crash). ringtone.play() does exactly what
you’d expect. All pleasingly straightforward.

There is, however, still something missing. The first time I
tried this, I was pleased to get the ringtone, but less pleased
when I realised I had no way of stopping it. So, let’s hop back
up to the onCreate method and set up a stop button:
Button stopButton = (Button) findViewById(R.id.stopbutton);
stopButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 if (timer != null) {
 timer.cancel();
 countdownDisplay.setText(Long.
toString(countdownSeconds));
 }
 if (ringtone != null) { ringtone.stop(); }
 }
});

In fact, while we’re here, let’s use the same button to stop
either the timer mid-count, or the ringtone mid-ring. Since
both of these are stored as member variables, and have their
own stop/cancel methods, this is easy. It’s important to check
first that neither is null (as will be the case if the timer isn’t
currently counting-down, or the ringtone isn’t currently
ringing), but then we can just call the relevant methods. In the
case of the timer, the countdown display is set back to its
starting value, as well... Blissful silence. Lovely.

Time to get real
Before you release an app into the wild (aka the Android
Market, on which more below), you should test it on at least
one real hardware device. To do this, you can connect your
phone via USB to your development box.

If using Ubuntu, there’s a little setup to do so that your
system will pick up your phone correctly, which will vary
according to your device manufacturer; see http://
developer.android.com/guide/developing/device.html for
details on this. You’ll also need to turn on USB Debugging on
your device (under Menu > Settings > Applications >
Development), and edit AndroidManifest.xml in your app so
that the <application> looks like this:
<application [...] android:debuggable=”true”>

Install the app to your phone with:
adb -d install -r bin/countdown-debug.apk

Note that you can get debugging info via ddms just as you
can with an emulator.

So far, even when testing on your real device, you’ve only
generated a debug version of your app. If you want to publish
it, you’ll need to produce a non-debug version.

Give your app a version number by setting android.
versionCode and android.versionName in the <manifest>
element in AndroidManifest.xml. You should also specify an

icon in the <application> element, which you then put in
res/drawable. Edit android.label to define the name that
your app will have in the Applications menu, and remove
android:debuggable=”true”. Check, while you’re at it, that
you haven’t left any debugging code lying around.

Next you need to generate a private key, using keytool
(check that the link from /usr/bin/keytool points to a
version within the JDK, not the gjc version). To publish in
Android Market, the key must have a lifespan of at least 25
years (9,125 days).
keytool -genkey -v -keystore ~/android/release-keys.keystore
-alias mykey -keyalg RSA -validity 10000

ant release will generate an unsigned release version of
your code, which you need to sign with this key, using
Jarsigner. Next, you need to sign the release-compiled app,
using Jarsigner:
jarsigner -verbose -keystore ~/android/release-keys.keystore
countdown-unsigned.apk mykey

mykey is the key alias as set up above, countdown-
unsigned.apk the app itself, and -keystore gives the full path
to the keystore. Verify the signing with
jarsigner -verify countdown.apk

Run another test of this final version, and then you can
publish, either via your own website for manual download and
install, or via Android Market, which requires setting up a
developer account and paying $25.

Explore more
There’s still a lot more you can do even with this simple
program – for starters, it still leaves a lot to be desired
visually. Alternatively, you could start exploring some of the
other Android API, such as the gyroscope or the GPS and
Map services.

As Android is open source, you can even get hold of the
source code and dig into that a bit to give yourself some
ideas. Just go ahead and get your coding hands dirty, and see
what you can come up with. LXF

LXF146.sup_android 11 5/4/11 12:26:38 PM

