
Android

8 Coding Academy June 2011 www.linuxformat.com

starting out it’s not that hard to go for the do-it-yourself
option, and it does give you a much clearer idea of what’s
going on under the hood. We’ll use the DIY route here, partly
for that extra control, partly because setting up Eclipse is
easily a tutorial all of its own, and perhaps partly because
we’re a bit inclined to the old-school ourselves.

Getting set up
The first step in creating your app is to download the Android
Software Development Kit (SDK) starter kit from the Android
developer site, http://developer.android.com/index.html.
At the time of writing, the current version is rev 10. Download
and unzip it, then put the directory wherever you fancy
keeping it. Check that the permissions are set up correctly,
so that you can access the directories and tools, and then
have a look at the directory structure. You can get at the
offline documents from the docs/offline.html page. You’ll

need version 1.5 or 1.6 of Java to
work with the most recent
version of Android: 1.6 is
available as the openjdk-6-jdk
package for Debian or Ubuntu.
Note that Android won’t run with
gcj (the GNU Compiler for Java).

You also need to install Apache Ant version 1.8 (the ant
package on Debian stable and Ubuntu 10.10; ant1.8 on
Ubuntu 10.04) to compile Android binaries.

It’s a good idea to add tools/ and platform-tools/ to
your $PATH, so you can get at these tools directly. To do so,
edit your ~/.bashrc to include this line, substituting your SDK
directory for <sdk>:
export PATH=${PATH}:<sdk>/tools:<sdk>/platform-tools

Then type source ~/.bashrc. That gets the basics set up,
but the SDK starter kit includes only the core tools, not any of
the Android platforms. You can use the android graphical
SDK and the Android Virtual Device (AVD) manager (which
can be found in tools/) to grab whichever platforms and
other packages you want.

Take a look at the Available Packages tab. You’ll need to
install at least one platform (see the Android Platforms box
for further information) and in this tutorial we’ll be developing
against Android 2.2 (API 8). You should make sure that you
have the Documentation, Tools and Platform-tools packages
ticked, and you can also grab the Samples. Later on, you
might want to install the Google APIs add-on, which gives you
Maps access. Hit Install Selected and go and make a cup of
tea while it all downloads. After that, you’ll be ready to start
developing your application.

Android:
Get started
Writing a simple Android program is a quick project. Set up, produce and
test a countdown timer app in this first instalment of our new series.

As Android smartphones proliferate (and the chance
that you have one of your own increases), writing a
short program for them becomes a fun project,

even if your coding experience is minimal. Unlike other
smartphone operating systems, Android is open source and
runs on a Linux kernel, with a collection of Android-specific
Java libraries acting as intermediaries between the kernel
and the software developer. All the development tools are
available online, and if you’re familiar with even basic Java,
then the comprehensive API and documentation make it
easy to get started.

We’ll assume a few basic familiarities in this tutorial:
1 Some notion of Java (we won’t explain the basics of how

classes and methods work), although even if you have no
Java experience you’ve got a fair chance of being able to
follow along anyway.
2 Some basic programming concepts (compiling code,

looking for bugs and so on).
3 A very basic grasp of

Extensible Markup
Language (XML).

However, even if your
knowledge of the above is a
little shaky, one of the best
ways to start finding out about it is to get stuck into some
code – so keep reading!

You can either write your Android code in Eclipse (a Java
development environment) with the Android plugin or take
the slightly more old-school route and write and compile
everything by hand. Eclipse does take a bit of the work out of
Java boilerplate construction, but especially when you’re

 The Android
SDK and AVD
manager, which
is showing
virtual devices.

“The best way to find
out about it is to get
stuck into some code.”

Juliet Kemp is
now on her second
Android phone
and has difficulty
recollecting how
she coped without
one. Sadly it
doesn’t quite write
the code for you
yet, although it’s
probably only a
matter of time.

Our
expert

LXF145.sup_android 8 4/5/11 3:44:57 PM

Android

www.tuxradar.com June 2011 Coding Academy 9

The android tool used on the command line will create an
empty project for you, with the correct structure for it to
compile into a working Android binary. Create a working
directory for your Android code projects, and cd into it, then
generate the project:
mkdir ~/android_code/
cd ~/android_code/
android create project --target android-8 --name countdown
--path ~/android_code/countdown --activity
CountdownActivity --package com.example.countdown

So, what do all those options mean?
1 target Identifies the platform that you’re building against.

Use android list targets to see what’s available. The
numerical ID will depend on what you have installed locally,
but the name of the target will stay the same – android-8 is
Android 2.2, currently the most popular.
2 name Sets the project name.
3 path The project directory; this will be created if necessary.
4 activity This sets the name of your main class of your

project. There’s more to Activities than this, but because this
project only has one Activity, there’s no need to investigate
further for now.
5 package This identifies your project namespace. Like

Java packages, the rule is that you take your internet domain
name and reverse it to generate the package name; thus
com.example.countdown from the example.com domain.
If you don’t have a domain, you can use local.myname.
countdown, but you risk namespace collision.

If you cd into the new directory, you can check out the
directory and project structure. Source code lives in src/;
res/ contains various package resources, including layout.
After that, build.xml is the build file, which you shouldn’t
need to edit by hand, and the other important file is
AndroidManifest.xml, which sets up the application’s
components and structure, and declares the necessary
libraries, the platform and other similar information. The
online docs provide more information about this file.

At the moment, this is just an empty project, with no
functional code, but it does still compile. Run:
ant debug

from the top-level project directory to generate a bin/
countdown-debug.apk file. The debug build target is used
when developing; we’ll look at generating a ‘real’ program next
time. Now we can start to write some code.

Your first Android coding
Open the CountdownActivity.java file, created for you under
the src/ directory, in your preferred text editor to get started.

First, at the start of the class you need to declare a few
private variables (variables accessible only within this class,
not to any other classes) that you’ll use later on:
public class CountdownActivity extends Activity {
 private static final int MILLIS_PER_SECOND = 1000;

 private TextView countdownDisplay;
 private CountDownTimer timer;
}

The first one is a constant declaring how many
milliseconds there are in a second (that would be 1000). The
second two are internal variables for use in later methods.

Every Android Activity has an onCreate method, the stub
of which is created for you when the class is generated. This
is called when the Activity is first created.
@Override
public void onCreate(Bundle savedInstanceState) {

Android:
Get started

 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 countdownDisplay = (TextView) findViewById(R.id.
countdownDisplay);
 final EditText timeEntry = (EditText) findViewById(R.id.
timeentrybox);
 Button startButton = (Button) findViewById(R.id.
startbutton);
}

The initial @Override tells the compiler that this method
overrides a method declaration in a superclass. The first line
explicitly calls the onCreate method of the superclass, and
then the second line grabs the view for this Activity. The view
deals with the user interface (drawing things on-screen and
managing any events), and we’ll look at how Android
manages layouts in the next section.

Display the details
The final three lines set up the display for the countdown
(countdownDisplay, which was declared at the start of the
class), the text entry field for the user to choose the
countdown time (timeEntry), and the Start button

Java requires a
certain amount
of boilerplate. Not
all of the code is
included in the
code listings here,
for reasons of
space; check the
LXFDVD for full
code listings.

Quick
tip

Android platforms
There are seven Android platforms (1.5,
1.6, 2.1, 2.2, 2.3, 2.3.3 and 3.0), each
corresponding to a different API level,
from 3 to 11. The page at http://
developer.android.com/resources/
dashboard/platform-versions.html
has information on how many devices
are running each platform. Most active
devices are running 2.2 (this is probably
what you have on your own phone); a
fair few are still on 2.1; and there are
a handful on 1.*. Android 2.3.3 is slowly
being rolled out to newer phones and to
the Google-controlled Nexus One, but
it’s unlikely to be released by other
phone manufacturers for a while.

Any application developed for an
earlier platform will be compatible with
all newer platforms, because Android is

entirely forwards-compatible. It’s a
good idea to use multiple virtual
devices and test versions both
backwards and forwards from your
initial setup.

Be aware that Android 3.0 is different
from the rest – it’s been optimised
specifically for tablets and other
devices with larger screens. The UI is
new and improved, and there’s a new
interaction model. Few devices are
currently using 3.0, so unless you’re
one of those bleeding-edge users,
you’re better off sticking to developing
on 2.*. However, if you want you can
install and run the code in this tutorial
on a 3.0 virtual device, and it will still
work just fine due to the forwards-
compatibility feature of Android.

 The text
entry fields
and buttons all
laid out. The
countdown
display hasn’t
been kicked off
yet, though.

LXF145.sup_android 9 4/5/11 3:44:58 PM

Android

10 Coding Academy June 2011 www.linuxformat.com

 The Android
emulator: the
pretend device
will respond
to mouse
movements,
and there’s a
keyboard to the
right. Click the
middle-bottom
icon to get to the
applications list.

Tick Scale Display
To Real Size to get
a more manageable
display; we found
eight inches to be
a good screen size
on a laptop.

Quick
tip

Abstract classes and interfaces
An abstract method is one that has a
declaration, but no implementation,
like this example:
abstract void onClick(View view);

A class that has abstract methods
must be declared abstract itself (you
can also declare a class to be abstract
even if it doesn’t have any abstract
methods, if you want to).

Abstract classes can’t be
instantiated, so you can’t just do:
OnClickListener pingListener = new
OnClickListener();

Instead, you have to create a
subclass of it and instantiate that.

This also means implementing all of
its abstract methods or, alternatively,
declaring the subclass itself also
abstract (and thus subclassing that
again to use it).

The subclass can be in its own class
file, or in-line, as in the code here.
OnClickListener has only a single
method, OnClick(View v), so that’s all
that must be implemented. In fact,
OnClickListener is an interface, which
is even more restricted than an
abstract class; it can’t contain any
actual method bodies, only abstract
methods and constants.

class, mySpecialButton, outside the current class, but this
would be overkill for a single button. Instead, we just do the
whole thing in-line.

The user input box, timeEntry, has already been set up
above; now we grab the text from it, turn it into a string and
then turn that string into an integer and store it in
countdownMillis. The showTimer() method (see below) is
called with countdownMillis passed in as a parameter, and
the button returns, so it’s freed up to be clicked again.

This all works well if the user inputs an integer, but what
happens if they try to input a string? This would, of course, be
a bit dumb (what would it even mean to ask for a countdown
from ‘hello’?), but it’s always best to expect users to try
foolish (or simply inquisitive) things. We’re not going to go far
into the details of error-handling right now, but a basic
catch-and-ignore looks like this:
try {
 int countdownMillis = Integer.parseInt(timeStringSeconds.
trim()) * MILLIS_PER_SECOND;
 showTimer(countdownMillis);
} catch (NumberFormatException e) {
 // method ignores invalid (non-integer) input and waits for
something it can use
 // A user popup here would be a good idea
}

With this in place, the code, as per the comments, simply
ignores the invalid input. As a rule, it’s not a good idea just to
ignore an exception; if it’s valid to do so (as it arguably is in
this case, at least for now), then you should always include a
comment to explain why you’re doing it. A better option here,
as the comment says, would be to generate a pop-up
explaining the problem to the user, but that’s beyond the
scope of this tutorial.

Show the timer
The one thing now left to do with the code is to write the
method that shows the countdown. Usefully, Android has a
CountDownTimer class for us to use:
 private void showTimer(int countdownMillis) {
 timer = new CountDownTimer(countdownMillis, MILLIS_
PER_SECOND) {
 @Override
 public void onTick(long millisUntilFinished) {
 countdownDisplay.setText(“counting down: “ +
 millisUntilFinished / MILLIS_PER_SECOND);
 }

 @Override
 public void onFinish() {
 countdownDisplay.setText(“KABOOM!”);
 }
 }.start();
 }

CountDownTimer has two arguments: milliseconds from
now to count down to (hence multiplying our seconds value
by 1000 to get countdownMillis, in the onClick method
above), and how often a ‘tick’ happens. Setting this to 1000,
as the constant does here, gives one tick per second, so
onTick runs once per second, and the display changes once
per second. You can play around with this value a bit to see
what happens as it changes.

Again, this is an abstract class, and the onTick(long
millisUntilFinished) and onFinish() methods must be
implemented when it’s subclassed. On every tick, the timer
will display the message counting down: and the number of

associated with that text entry field (startButton). Here,
timeEntry needs to be final because it’ll be referred to in an
anonymous inner class in a moment.

As you can see in the code on the previous page, these all
use the findViewById method – this sets up the screen
layout, which will be covered in the next section, as will the
R.id syntax used to refer to non-code resources.

Click the button
So far, the method has set up the layout and the necessary
fields, but it’s not actually doing anything with them. Next,
let’s set up a method that specifies what should happen when
the Start button is clicked.
startButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {
 String timeStringSeconds = timeEntry.getText().toString();
 int countdownMillis = Integer.parseInt(timeStringSeconds.
trim()) * MILLIS_PER_SECOND;
 showTimer(countdownMillis);
 }
});

The idea is that the user enters a time, and then clicks
Start to set off the countdown. This method sets up an
OnClickListener for the Start button; as the name might
suggest, this ‘listens’ for the event of a click on the button.
OnClickListener() is an interface class, so it must be
subclassed. We could achieve this by creating a whole new

LXF145.sup_android 10 4/5/11 3:44:59 PM

Android

www.tuxradar.com June 2011 Coding Academy 11

seconds left until the end. Once finished, it’ll show KABOOM!.
The very last line calls the start() method on the new timer,
to kick off the countdown.

What happens if the user (being inquisitive again) enters
a new value, and clicks the start button again, while the first
timer is still running? There’s nothing to stop a new timer
from being created, which will fight with the first one for
control of the display. A single extra line right at the start of
the method will avoid that problem:
if(timer != null) { timer.cancel(); }

That’s it for the code itself; now for the onscreen layout.

Layout and buttons
Layout for your main Activity class (this code has only one
Activity anyway) is handled in the res/layout/main.xml file.
All the program resources are kept here: images, layouts,
string data and anything else that’s not code. Layout and
string data is stored in XML files, and if you’re familiar with
HTML, XML syntax shouldn’t be too hard to translate. Check
the full code listing to see the whole thing, but the first few
lines look like this:
<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout xmlns:android=”http://schemas.android.
com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 >

This is a RelativeLayout (one of several available layout
types), which means that each view is set out in relation to
the other views. It’s vertically
oriented, and content will
wrap as necessary.

A view is any single
object, so the text entry box,
the countdown display and
the button are all views.
Each of them will have a section in the XML:
 <TextView
 android:id=”@+id/countdownDisplay”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:padding=”50px”
 android:text=””
 />

At the start of the previous section, the onCreate method
had some lines like this:
mCountdownDisplay = (TextView) findViewById(R.id.
countdownDisplay);

You locate a view by its id attribute, referred to as
R.id.idname. You can also use the id attribute when referring
to a view within the XML layout:
<TextView
 android:id=”@+id/label”
 [....]
 android:layout_below=”@id/countdownDisplay”/>

The other attributes set up different aspects of the layout.
It’s time now to compile everything with ant debug (from

the countdown directory) and see if it runs. If you get any
compile errors, check that you’ve imported all the necessary
classes at the top of CountdownActivity.java (see the code
listing on the LXFDVD for the full list of required classes).
Once compiled, though, does it actually do what it’s supposed
to? The Android SDK includes an emulator, so you can test
first on your dev box before installing to your phone.

 The application
doing its work,
counting down.

“The SDK includes an
emulator, so you can
test it on your dev box.”

To reinstall a new
version of the app,
use adb install -r
bin/Countdown
Activity-debug.
apk. Simple!

Quick
tip

Next time!
Next time, we’ll look at apps with more than one Activity
and how they interact with one another; setting up menu
items; slightly more complicated layouts; real phones and
the Android Market; and a few more of the Android APIs.

Fire up android to get the SDK/AVD manager, and then
use the Virtual Devices tab to create and manage your
virtual devices for testing (you can also use the command
line). You can have as many AVDs as you like, to test on
different setups, but for a basic one simply hit New, give it a

name and choose the 2.2
target, leaving the other options
as default. When the AVD is
generated, hit Start.

Once it’s running, you can
install the application using
the following:

adb install bin/CountdownActivity-debug.apk
and adb will automatically pick up the emulator.

Once installed, click the Launcher icon at the bottom of
the phone screen, then the Countdown icon. The app will
remain installed if you shut down the emulator and start it up
again with the same AVD: all the existing information is stored
as part of the AVD on shutdown.

Going further
You can probably already think of a few things to add to this
basic application – playing an alarm at the end of the
countdown would be one obvious option, or you could add
a Stop button to the timer, and there’s also the error pop-up
message mentioned earlier. Mess around a bit with the code
and see what else you can do with it, or try adding a text box
to edit the text that shows at the end of the countdown.

You’ll also notice that so far this program runs only on
the virtual development device. In the next instalment of the
series, we’ll look at how to run it on a real phone, or even
release it into the wilds of the Android Market. LXF

LXF145.sup_android 11 4/5/11 3:44:59 PM

