
W
e all spend endless hours completing
repetitive tasks on our Linux boxes when
we could be doing something far more
interesting (like playing Alien Arena, for

example). Wouldn’t it be great if you could just write a
small script that does it all for you, then schedule it to
run automatically?

Those of you who have ever automated tasks in Windows
will be familiar with the idea of writing a VBScript, and shell-
scripting is not entirely dissimilar. You simply create a text file
with a .sh extension, type a set of terminal commands on
each line in the order they should be executed, then launch
your script from a terminal using:
sh script.sh

The key difference is that your shell script runs with root
permissions only if you specify this on the command line,
meaning a rogue shell script can’t wreak havoc through your
entire system. Also, shell scripts are interpreted from the shell
(as the name suggests) while a VBScript relies on the
presence of the Windows Script Host. An added bonus is that
the Bash terminal can also be used in OS X, BSD and other
Unix variants, so your scripts will be portable.

It’s almost obligatory these days to run a “Hello, world!”
tutorial to introduce coding concepts, and there’ll be no break
from tradition here. Open your favourite text editor, create a
file called script_tutorial.sh and add the following lines to it:
#!/bin/sh

My first shell script

#

clear

echo “Hello, world!”

The first line defines which terminal should be used to
execute the script (we’ve chosen sh because it’s portable),
and in the second line we’ve included a nice name inside the
comments field so we know what the shell script does. The
commands underneath then clear the terminal before
printing our “Hello, world” line to the terminal window. This is
the general structure that seems to be prevalent in most shell
script files, and this is also the form that people will expect if
you head to the forums or redistribute your scripts.

My first shell script
With the next step we acknowledge that hard-coding values is
not good programming practice. We need to add some
variables to our shell script – to do this, simply replace the
last line of your shell script with:
var=”Hello, world!”

echo $var

Here we declare and set the variable named var to store
“Hello, world!” and then output the variable contents. You’ll
notice there’s no type-checking with shell variables so you will
need to add your own tests later as necessary.

We can now extend this further by enabling you to define
the output text as an argument from the command line
rather than from the script itself. Replace the “Hello, World!”
in the previous snippet with $1. Now if you run the following in
a terminal:
sh script_tutorial.sh “Hello, world\!”

you should see the this text appear as the output. Notice how

Shell scripting
Automate common tasks
If repetitive operations bore you, Bob Moss can help you automate them.

 Don’t leave
visitors stumped
with the default
‘Drupal Powered
By Bitnami’ title.

48     LXF126 Christmas 2009 www.linuxformat.com

LXF126.shellscript 48 26/10/09 12:23:3 pm

we have to escape the exclamation mark with a backslash to
provide the correct result.

This is all well and good, but what if we want to store this
useful information more permanently? Let’s take a look at the
following code, which you can use to replace everything below
the clear line:
echo $1 >> sample.txt

cat < sample.txt

#rm -rf sample.txt

The top line appends our “Hello, World!” string to
sample.txt, but if the file doesn’t exist already then it’s
created automatically. The next line then reads the contents
of the file and prints the output to the terminal for you to read.
You can optionally uncomment the bottom line by removing
the hash. The reason this is commented is to show that if the
file already exists, the script will keep appending the
argument text to a new line each time. However, if you
uncomment the final line the text file will be removed each
time you run the script, which can be useful if you want to see
the text you’ve entered as an argument on this occasion only.

Ifs and loops
You can also automate decisions in your shell script using the
if, elif and else clauses. Try using the code in Listing 1 to
replace the contents of your current shell script:
Listing 1: shellscript_tutorial.sh

1 #!/bin/sh

2

3 if [-n “$1” -a “$1” = “Hello world”]

4 then

5 echo $1 >> sample.txt

6 cat < sample.txt

7 rm -rf sample.txt

8 elif [-n “$1”]

9 then

10 echo “Try Harder!”

11 else

12 echo “FAIL!”

13 fi

14

15 i=0

16 case $i in

17 0) echo “zero”;;

18 1) echo “one”;;

19 2) echo “two”;;

20 esac

In line three you’ll notice that we haven’t included an
exclamation mark in our “Hello world” string. It makes sense
that this doesn’t work by default, because if we were handling
a file address that uses \ as an escape character somewhere
in the path, we would want it to remain intact, so it can be
used later in the script.

We use -n to make sure that the user has actually entered
some text as a parameter by checking the value is not null,
then we check that the parameter contains “Hello world”
(notice we use -a to specify ‘and’). If these conditions are met
we execute the same commands we did in the previous
example. Otherwise we check that the user has still managed
to enter something, and if so, the script will heckle them a
little for not entering the correct text! But if all else fails we
use line 12 to output FAIL! in big capital letters in the terminal.
We could also extend this by adding nested if statements for
situations where this is necessary, and this will work so long
as each if has a closing fi. Just remember that they always
take the following form:

if [condition]

then

<command>

elif [condition]

then

<command>

else

<command>

fi

But you aren’t restricted to just this type of conditional
statement. As demonstrated in lines 15–20 you can also use
a switch to accomplish much the same end. You will also
notice that for the first time you need to suffix the end of each
case with two semicolons in order to for execution to flow
correctly. In the example the variable i stores a value of zero.
This is then evaluated by the switch, and it produces the
output that we specify. As a result, if you enter “Hello world”
as an argument with this script example you should see the
following output:
Hello world

zero

Using our new-found knowledge we could also include a
loop to append our text several times to the same file when
you run the script. Thankfully this is a relatively trivial exercise,
as this example shows:
if [-n “$1”]

then

for x in 1 2 3 4 5

do

 echo $1 >> sample.txt

done

cat < sample.txt

rm -rf sample.txt

else

echo “No text for me to act on!”

fi

Here we check that the user has added text as a
parameter, and if so append it five times to sample.txt (this is
the number of iterations in our loop). We then read from the
file and print to the contents to the terminal window (the
output should be the argument text repeated five times!)
before destroying the text file. If you didn’t send any text to be
appended, the script generates an error message that will
appear so the user can see that they need to try again.

You could also
use -o or -x for ‘or’
or ‘xor’ when you
define conditions
within your if
statements. Also,
if you need < and
>, simply use -l
and -g.

Quick
tip

 Shell scripting
is so simple that
you too could
be taking quick
notes with under
10 lines of code.

www.tuxradar.com Christmas 2009 LXF126     49

Shell scripting

LXF126.shellscript 49 26/10/09 12:23:4 pm

Script a backup solution
Put your new-found knowledge to good use and secure your data. 

T
o give a practical example of scripting in action, we’ll
wrote a simple backup script that copies a source
folder to another location. Take a look at the code in

Listing 2 and you’ll see that in line three that we use -d as
our criterion in the conditional statement. This checks
whether both of the directories you specify in the script
actually exist. If so, you simply copy from source to
destination. If not, we use line seven to check if the source
directory exists (in which case we simply create the
destination directory to copy to).

However, if the directory of important files you want to
backup doesn’t exist, line 13 prints a helpful error message to
the terminal window. After all, we need the files to backup in
the first place to make this a useful script!
Listing 2: backup.sh

01 #!/bin/sh

02

03 if [-d $1 -a -d $2]

04 then

05 cp $1/* $2

06 echo “Backup complete”

07 elif [-d $1]

08 then

09 mkdir $2

10 cp $1/* $2

11 echo “Backup complete”

12 else

13 echo “Unable to locate source directory”

14 fi

The code snippet you see above is not necessarily the best
way of keeping repeated backups of a particular directory. For
example, any backup files that have been automatically
generated in the folder will still be retained (use ls in your
documents folder to see how many filenames you have with a
tilde on the end) and cp doesn’t transfer changes to existing
files, so you would have to remove the destination folder

and copy everything over each time. Though we could use an
rm -rf command in listing 2 to make this a more incremental
backup, it still wouldn’t make the backup any more efficient,
as it simply adds an additional delete operation that uses
more resources and slows the script as a result. But as a one-
time backup the above script is sufficient for most purposes.

Another method we could use to make this script
something we could use more often would be to use rsync
instead. Suddenly we have a basic incremental backup
system. Simply replace every line beginning with cp in
Listing 2 with the following:
rsync --recursive --times --perms --exclude “~*” --exclude

“*bak” $1 $2

We use recursive to loop through each subdirectory, then
times and perms to maintain file permissions and time
stamps (which is useful information for subsequent rsyncs).
Those two parameters are then followed by two exclude
methods to remove those automatically generated backup
files mentioned earlier, before specifying the source and
destination locations. You will now find that file changes are
transferred, and after the first run your backups should take
considerably less time to complete, as you’re transferring file
changes rather than whole folders.

Shrink it down
The next step is to compress our backup into a tarball (also
referred to as a gzip archive on some Linux systems) by using
the script you can see in Listing 3.
Listing 3: compress.sh

01 #!/bin/sh

02

03 if [-f $1/../backup.tar.gz]

04 then

05 tar -uz --file=$1/../backup.tar.gz $1

06 elif [-d $1]

07 then

08 tar -cz --file=$1/../backup.tar.gz $1

09 echo “Backup packaged”

10 else

11 echo “Backup packaging failed”

12 fi

Here we use the tar command to create an archive or update
an existing one. You’ll notice in line three that we use -f in our
conditional statement to check whether our backup tarball
already exists. If so, we can simply update the tarball. As we
saw from Listing 2, we could just delete the existing tarball
and create a new one, but it’s much simpler to use the -u
argument in the tar command as this will update the existing
archive without needing to extract or repackage the file.

If we don’t have a tarball but the backup directory exists,
then we use line eight to create a new archive from that folder.
We could optionally use an rm -rf line to tidy up afterwards. If
all else fails, we print an error message people.

Note that as things stand this script only needs you to
specify the backup directory and not the source. However,
you can convert this routine into a standalone backup by
changing all instances of $1 to $2, excluding lines five and
eight, and from then on you’ll need to specify a source
directory to back up.

 Insure your
favourite pictures
and holiday
snaps with our
backup scripts.

For a quick way
to verify that your
backups haven’t
been tampered
with you should
also see the MD5
feature in LXF123

Subscribers will
find a copy in PDF
format on the Linux
Format website.

Quick
tip

50     LXF126 Christmas 2009 www.linuxformat.com

Shell scripting

LXF126.shellscript 50 26/10/09 12:23:4 pm

Script a backup solution Now we have a backup of our files, it makes sense for us
to have a script to quickly restore the files in that directory.
For this we can use the code in Listing 4. Note that when you
run this sample on the command line you will need to specify
the backup directory first before the destination.
Listing 4: restore.sh

01 #!/bin/sh

02

03 if [-f $1/../backup.tar.gz]

04 then

05 tar -xz --file=$1/../backup.tar.gz

06 rsync --recursive --times --perms $1 $2

07 rm -rf $1

08 echo “Restore successful”

09 elif [-d $1]

10 rsync --recursive --times --perms $1 $2

11 tar -cz --file=$2/../backup.tar.gz $1

12 rm -rf $1

13 echo “Restore successful”

14 then

15 else

16 echo “Restore failed”

17 fi

Once again we check whether the archive exists, in which
case we extract it and use rsync to move files back to the
relevant directory. We could have used cp, but we would lose
our timestamps and permissions as a result. You will also
notice that we don’t need the exclude lines in this instance,
as there will be no
automatically generated
backup files in your archive
thanks to our previous backup
scripts. We then clean up by
deleting the directory where
we have just extracted the
tarball contents in order to save disk space.

If the archive doesn’t exist, or you’ve specified a directory
rather than an archive, then lines 10–13 restore your files,
produce an archive of your backup then remove the backup
folder you initially specified to save disk space once again.

 These conditions ensure that we always produce the
same result each time we use the restore script if the user
enters valid input. If neither the backup directory nor backup

Scheduling workshop

By far the easiest way to schedule a script is to make it run at startup 
thanks to the GUI methods provided by most modern Linux desktops. 
Within Gnome, head to System > Preferences > Startup Applications and 
simply add your shell script as an entry. KDE 4 users can accomplish 
much the same thing by copying the script into ~/.kde/Autostart, and 
then by typing the following into a root terminal:
chmod +x script.sh

If you want finer control of when your script runs, use crontab, a native 
task scheduler. You’ll need to ensure from the outset that you are able to 
access crontab, and to do this you’ll need to check your system for files 
named crontab.allow or crontab.deny. If neither exist then you can only 
access crontab as a root user, but if they do exist, ensure your user is in 
the first file and not in the latter. You can now fire up a terminal and type 
the following commands:
export EDITOR=nano

crontab -e

You could now add something similar to the following line to the file:
30 18 * * * sh ~/script.sh

Once you have pressed Ctrl+X, follow the instructions to save and exit. 
Crontab will now run script.sh in your home directory at 6.30 pm every 
day. To make sense of this line, take a look at the following table:

In true American fashion, crontab’s week starts on a Sunday (day 0).

You will also notice from the command we added before that simply 
using a wildcard character * as a field value will run the script each time 
the value increases, meaning you could for example run hourly and daily 
tasks if you so choose. 

Every time your script is run crontab will try to send your user an email 
to say how things went, which is useful for server administrators but not 
necessarily useful for those of you who simply want to schedule actions 
on your home machines. We can optionally suppress the email by editing 
our previous line as follows:
30 18 * * * sh ~/script9.sh > /dev/null 2>&1

“You could write a script
that automatically opens
your favourite apps.”

Timescale Minutes Hours Days Month Day 

Range 0–59 0–23 1–31 1–12 0–6

archive can be located, then we output a simple human-
readable error message.

There are endless ways you could extend this project. You
could schedule your backup to run automatically using
crontab (see box, below), have your computer tell you when
the job is done using a speech synthesiser such as Festival or

eSpeak, or even rewrite the
scripts to keep archives for
several dates or times. And if
backups aren’t your thing, you
could write your own startup
script to run at login that
automatically opens up your

favourite applications (which is quicker to manage than
Gnome and KDE 4’s GUI methods). You could convert your
entire music collection from MP3 to Ogg Vorbis format. Any
task that you find repetitive or needs to be executed a large
number of times can usually be automated in a shell script,
so the possibilities are limitless. If you produce anything
particularly special or interesting, do let us know at the usual
address and share your hard work. LXF

 You could extend the backup scripts to retain archived snapshots, so you can
easily roll back to any moment in time.

www.tuxradar.com Christmas 2009 LXF126     51

Shell scripting

LXF126.shellscript 51 26/10/09 12:23:6 pm

