
Tutorial Mash your web up

94 LXF123 October 2009 www.linuxformat.com

Nick Veitch
launched and
edited Linux
Format for its first
eight years. Then
he went bad.

Our
expert

 Tutorial code

functionality of the Digg site, but it will demonstrate enough
that you could go on to create a full API if you wanted to.

Many sites use a particular form of communication for
their API and some use several. Of these, the most popular
are JSON and XML. JSON is simpler and easy to integrate
into JavaScript, which is why it often pops up. XML is bigger,
chunkier and prettier. It’s also slightly easier to follow, but you
end up with swathes of response even for a simple query. Still,
it’s what we’ll use here.

To be fair, there isn’t a great deal of difference between
them, but XML is the lingua franca of the web, so if you can
handle API calls through XML, it will stand you in good stead.

Python handles XML well and has an established module
for manipulating it, but we’re getting ahead of ourselves. The
first thing we need to do is determine how we can interact
with the Digg API in the first place. And, as with many web-
savvy social websites, Digg has lots of documentation for
programmers on how to use the API. Yay!

Digg it URL style
Head over to the Digg API site (http://apidoc.digg.com) and
take a look at what’s on offer. The API is accessed through the
main website via queries. You’re probably familiar with these
already – they’re a collection of values that are passed to the
webserver for processing, beginning with a ? and separated
by &. We don’t even need to write a single line of code
ourselves to try them out, because we can just make up a
URL and type it into a browser. Since we’re going to use the
default XML response, a browser such as Firefox will display
the resulting XML code directly in the browser window
without having to save it to a file first, which is a great boon.
After all, the only thing more annoying than typing in a
complicated request and generating an error is having to load
up the file in your text editor to find out that it didn’t work.

The Digg API works by having specific endpoints, or URL
paths, to activate particular functions. So, for example, if you
want to find out the latest hot list you would navigate to
http://services.digg.com/stories/hot.

Try it in your browser and you’ll get an error message,
though. The only proviso from Digg to provide these services
is that the application making the request needs to have an
appkey (or API key). This is common among web services –
they want to be able to identify particular clients. This isn’t for
nefarious reasons, but if something is misbehaving and hitting
the server every 10 milliseconds, they want to be able to block
it without bringing down the whole API.

In this respect, Digg is a little unusual, because it doesn’t
require that you register an API key in advance, just that you
provide a URL to your application or the source of your client

Python: Digg t

Python: Mash up the web to get
its content served directly to you

Part 4: We unlock the web’s APIs with the power of XML. Your intrepid
guide to all things Python, Nick Veitch, won’t rest until he has dug Digg.

P
reviously in these tutorials we’ve used existing API
code to interface with our web objects of desire and
turn them to our needs. This saves us a lot of work, but

it’s also somewhat restrictive and leaves us dependent on
others. And anyway, why should we have to bother importing
an entire API module if all we want are a few methods?

So this time, even though there’s a perfectly reasonable –
if slightly out of date – API for Digg, we’re going to create our
own instead. Well, sort of. It isn’t going to cover all of the

 The Digg API
has its own site
and plenty of
documentation,
although it isn’t
always that easy
to follow.

Last month We made Twitter spit your tweets using Python. Lovely.

LXF123.tut_python 94 30/7/09 4:06:43 pm

www.tuxradar.com October 2009 LXF123 95

Python Tutorial

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

software. So, if we try again with the appkey http://services.
digg.com/stories/hot/?appkey=http://linuxformat.co.
uk, you should see a screen full of structured text. The ? In
the URL indicates a query and we are going to post some
values. The usual format for this is a list of key=value pairs,
separated by an ampersand, &. If we now change our URL to
http://services.digg.com/stories/hot/?appkey=
http://linuxformat.co.uk&count=1 then this time we will
only see the very first story. Obviously you could supply a
different count, or any of the other variables this particular
query accepts. How do you know what they are? Well, you
have to rely on Digg to publish them. In this case, you can find
the arguments for the endpoint towards the bottom of
http://apidoc.digg.com/ListStories.

Digg with Python
So, now we know the basics of the Digg API. We can type in a
URL and get it to return some XML in exchange. That’s all very
well, but how do we deal with this programmatically? Well, the
first thing we need in this case is a way to open a URL. The
standard Python module, urllib, can do this for us, so let’s fire
up a Python shell (open up a terminal window and just type
python) and see what we can do.
>>> url=’http://services.digg.com/stories/hot/?’

>>> appkey=’http:///linuxformat.co.uk’

 through XML

 If you use
Firefox or a
similar browser,
it will show
you the XML
that’s returned
from a query
in a default,
structured way.

>>> import urllib

>>> diggargs ={ ‘count’: 1, ‘appkey’: appkey}

>>> foo=urllib.urlencode(diggargs)

>>> request = url+foo

>>> request

‘http://services.digg.com/stories/hot/?count=1&appkey=http%

3A%2F%2Flinuxformat.co.uk’

>>>

OK, this needs a little bit of explanation. First up, we store
our base URL and our appkey as convenient strings, because
they’ll get used a lot. Once we’ve imported the urllib module,
we want to set up some variables to pass to Digg. Here we’ve
used a Python dictionary. This is a simple construct
contained in curly brackets that takes key=value pairs and
behaves a little like a list. The name of the value comes first,
followed by a colon and the actual value. The values can be
any valid Python type, but here they’re likely to take the form
of either strings or integers.

Why use a dictionary?
Why did we bother creating a dictionary out of our
arguments? As well as for the sake of being nice and neat,
there’s a helper function in urllib that will turn these into a
query string for us. This isn’t as simple as just concatenating
– joining together – all the strings, because HTML has rules

Beginners often
get stuck in the
Python shell on the
terminal because
the standard Ctrl+C
shortcut doesn’t
work. To quit the
Python shell, type
Ctrl+D instead.

Quick
tip

LXF123.tut_python 95 30/7/09 4:06:44 pm

96 LXF123 October 2009 www.linuxformat.com

Tutorial Python

Playing with XML
In the example here, we have pretty
short and straightforward XML that
doesn’t descend too far. For larger
documents, and if you want to start
generating XML yourself, you should
install a good editor.

There are a few XML-specific editors
such as XMLCopyEditor, which should
keep you right when it comes to your
structure. They’ll also make it easier to
scan and search through the text.

about the characters that can be sent as requests. So, the
next line employs the helper function urllib.urlencode to
translate our dictionary into a query string. Another
advantage of using a dictionary is we can easily add or
change values and regenerate the query string. By contrast, it
would be tricky to make changes if we’d just converted our
arguments to a query string directly.

A massive response
The request is built just by joining the base URL and the query
string. If you’re curious, you can just type in this variable
name and Python will output its value – in this case a barely
comprehensible URL, which is the result of the correct
encoding. So, what do we get if we connect to the server with
that request? Well, it should look like this:
>>> response = urllib.urlopen(request)

>>> response.read()

‘<?xml version=”1.0” encoding=”utf-8” ?>\n<stories

timestamp=”1247411540” total=”12257” offset=”0”

count=”1”>\n <story link=”http://www.thedailybeast.com/

blogs-and-stories/2009-07-11/young-gop-chooses-hate/”

submit_date=”1247350492” diggs=”109” id=”13923829”

comments=”46” href=”http://digg.com/politics/Young_GOP_

Chooses_Hate” status=”upcoming” media=”news”>\n

<description>Audra Shay, the Young Republican leader

accused of endorsing racism on Facebook, was elected head

of the group for GOP members under 40 this afternoon.</

description>\n <title>Young GOP Chooses Hate </title>\n

<user name=”Pash1994” registered=”1220537298”

profileviews=”2218” icon=”http://digg.com/users/Pash1994/l.

png” />\n <topic name=”Political News” short_

name=”politics” />\n <container name=”World &

Business” short_name=”world_business” />\n <thumbnail

originalwidth=”174” originalheight=”174”

contentType=”image/jpeg” src=”http://digg.com/politics/

Young_GOP_Chooses_Hate/t.jpg” width=”80” height=”80”

/>\n <shorturl short_url=”http://digg.com/d1wQDt” view_

count=”309” />\n </story>\n</stories>’

The urlopen function returns a file-like object that can be
manipulated like any other file object. This can be useful if
you’re expecting a huge amount of data, but I doubt you’re
going to run out of memory in our Digg experiments. So,
response.read() will just dump the file for us, and you might
want to stick these two together like so:
>>> response = urllib.urlopen(request).read()

This is a trick you can use with most Python objects, although
it can make the code harder to understand.

Our cunning trick has worked and we now have our
response – a huge mass of XML to deal with. To parse it in
as an XML object, we need to invoke some methods from
Python’s XML module as follows:
>>> from xml.dom import xml.minidom

>>> x = minidom.parseString(response)

Collecting data from objects and constructing a well-
formed XML file from that information is known in XML
parlance as marshalling. What we want to do, however, is the
reverse – create a Python object from the data. What follows
is probably one of the most copied bits of code ever, at least
in terms of Python and XML. It originates, I believe, in some
code written by Mark Pilgrim (the author of Dive Into Python),
but feel free to disagree via the usual address...
class Bag: pass

def unmarshal(element):

 rc = Bag()

 if isinstance(element, minidom.Element):

 for key in element.attributes.keys():

 setattr(rc, key, element.attributes[key].value)

 childElements = [e for e in element.childNodes \

 if isinstance(e, minidom.Element)]

 if childElements:

 for child in childElements:

 key = child.tagName

 if hasattr(rc, key):

 if type(getattr(rc, key)) <> type([]):

 setattr(rc, key, [getattr(rc, key)])

 setattr(rc, key, getattr(rc, key) + [unmarshal(child)])

 elif isinstance(child, minidom.Element) and \

 (child.tagName == ‘Details’):

 # make the first Details element a key

 setattr(rc,key,[unmarshal(child)])

 else:

 setattr(rc, key, unmarshal(child))

 else:

 text = “”.join([e.data for e in element.childNodes \

 if isinstance(e, minidom.Text)])

 setattr(rc, ‘text’, text)

 return rc

This will also take a little bit of explaining. The first odd
thing here is the Bag class, which seems to have been
defined with nothing in it. This is permissible in Python –
indeed, how could we know what was going to be in the class
until we’ve unpacked the data? It also demonstrates the
flexibility of Python perfectly; it enables you to have a class of
object that you make up as you go along.

Code anarchy?
The unmarshal function is simply a recursive procedure that
steps down every node of the XML DOM and creates a
Python object out of it. If you wanted to create an API module
for Python to interpret the Digg output, you could do so in a
more structured and meaningful way, because you would
know the structure of the XML. This method is a sort of global
catchall, with the downside that the object you created is still
ungainly. However, some post-processing can sort that out.

What we have is a list of story containers, which are
themselves held inside a container called stories. Each has
its own subnodes for comments, IDs, URLs and so on. If we

Never miss another issue Subscribe to the #1 source for Linux on p102.

 An XML editor can save you time,
grief and embarrassment.

LXF123.tut_python 96 30/7/09 4:06:44 pm

www.tuxradar.com October 2009 LXF123 97

Python Tutorial

wanted to take a look at the story objects, we could just
iterate over the stories container like this:
>>> for item in bar.stories.story:

>>> print item.id, item.link, item.title.text

There’s no reason why we shouldn’t programmatically
add data to this structure as well. What if, for instance, we
wondered where all these stories were being published? Well,
there’s a useful free library called GeoIP that matches IP
addresses to countries.

Adding more data
The GeoIP module is available for major distros, or you can
download it from MaxMind (www.maxmind.com/app/
python). It’s quite simple – you create a GeoIP object, then
use its methods to resolve a country code or name from the
domain name of a web server. Here’s a quick demo:
>>> import GeoIP

>>> geo=GeoIP.new(GeoIP.GEOIP_STANDARD)

>>> geo.country_name_by_name(‘google.com’)

‘United States’

Pretty simple stuff. Unfortunately, it only wants the
domain, not the whole URL. However, we can import yet
another module from the standard Python modules, called
urlparse (www.python.org/doc/2.5.2/lib/module-
urlparse.html), which will split up a URL into bits for us.
>>> import urlparse

>>> for item in bar.stories.story:

>>> item.country=geo.country_name_by_name(urlparse.

urlparse(item.link).netloc)

>>> print item.country

Here we’ve rewritten our loop and inside that we’re
creating a new property of our item object called country.
Feeding the chopped-up domain name from the urlparse
function into our GeoIP function spits out the name of the
country as a string.

If we wanted to go a bit further, we could take the country
values recorded and make a dictionary out of their frequency
in, say, the top 100 hot sites. This is pretty easy to do. We just
declare an empty dictionary then add one to the value of that
country’s key as we loop through the stories. If that key
doesn’t exist, we use a default value of zero. The dictionary
can be translated into a sorted list at the end and you could
easily draw a bar chart of country frequency.
#!/usr/bin/python

import urllib

from xml.dom import minidom

import urlparse, GeoIP, operator

url=’http://services.digg.com/stories/hot/?’

appkey=’http://linuxformat.co.uk’

geo=GeoIP.new(GeoIP.GEOIP_MEMORY_CACHE)

class Bag: pass

def unmarshal(element):

 rc = Bag()

 if isinstance(element, minidom.Element):

 for key in element.attributes.keys():

 setattr(rc, key, element.attributes[key].value)

 childElements = [e for e in element.childNodes \

 if isinstance(e, minidom.Element)]

 if childElements:

 for child in childElements:

 key = child.tagName

 if hasattr(rc, key):

 if type(getattr(rc, key)) <> type([]):

 setattr(rc, key, [getattr(rc, key)])

 setattr(rc, key, getattr(rc, key) + [unmarshal(child)])

 elif isinstance(child, minidom.Element) and \

 (child.tagName == ‘Details’):

 # make the first Details element a key

 setattr(rc,key,[unmarshal(child)])

 else:

 setattr(rc, key, unmarshal(child))

 else:

 text = “”.join([e.data for e in element.childNodes \

 if isinstance(e, minidom.Text)])

 setattr(rc, ‘text’, text)

 return rc

diggargs ={ ‘count’: 100, ‘appkey’: appkey}

foo=urllib.urlencode(diggargs)

request = url+foo

response = urllib.urlopen(request).read()

x = minidom.parseString(response)

bar = unmarshal(x)

hist = {}

for item in bar.stories.story:

 item.country=geo.country_name_by_name(urlparse.

urlparse(item.link).netloc)

 hist[item.country]=hist.get(item.country, 0) +1

sorted = sorted(hist.items(), key=operator.itemgetter(1),

reverse=True)

print sorted

We’ve covered a lot of ground here, even though we’ve
only tackled one Digg endpoint. For a more useful API, you’d
want to build a class and a few objects to cover users, stories
and so on, using the tricks here to populate them. Digg is
mostly one-way traffic, but next time we’ll be looking at how
to write data too as we build a GUI Flickr client. LXF

Next month We’re getting GUI as we build a standalone Flickr app.

 If you need
more help
learning Python,
try the excellent
Dive Into Python
in print or online.

If you’re
experimenting in
Python 3 you will
discover that urllib
no longer works.
That’s because it
has been split into
parts for Python3,
urllib.request,
urllib.parse and
urllib.error. You
can get more info
at the python
docs site http://
docs.python.org/
library/urllib.htm.

Quick
tip

LXF123.tut_python 97 30/7/09 4:06:46 pm

