
Juliet Kemp
thinks that version
control is the best
thing since
automated
backups,
especially since
the time she
accidentally
deleted 2,500
words then hit :w.

Our
expert

Version control systems

52 LXF120 July 2009 www.linuxformat.com

V
ersion control systems are indispensable if
you’re working on a multi-person project, and
they’re pretty damn useful even if you’re just
working solo. Keeping a full history of the

changes you’ve made gives you a basic backup and
enables you to revert back to an earlier version if you
screw something up.

But with so many options available, from the rather dated
CVS onwards, which one is best? What about distributed
versus centralised? We look at three of the big names –
Bazaar, Subversion and Git – to give you an idea of which one
might best suit you and your
project, whether that’s large-
scale software, small-scale
coding, keeping track of config
files or anything else that
might spring to mind.

Client–server vs distributed
There are two main types of version control system available:
client–server and distributed. There are also local-only
systems, such as RCS, which operate on a single machine at
a time, but those are very little-used now – it’s both easier
and more flexible to use a more modern system, even if
you’re only operating it locally.

Client-server systems work on a centralised model, where
there’s a copy of the current code on a central server,

which users check out in order to work on
locally. When a user has finished making
their changes, they update against the
central version (in case other people
have made changes in the meantime),
deal with any conflicts that might have
arisen, and then check their code into the
server, whereupon other people can
check it out again.

Distributed systems are structured on
a peer-to-peer basis: instead of one

centralised repository, everyone has their own

“There are two main
types of version control
system available.”

Take control

Juliet Kemp compares three of the big contenders for
managing your data changes: Bazaar, Subversion, and Git.

repository, and you synchronise by exchanging change-sets
in the form of patches, or by merging branches. In practice,
however, most projects of any significant size will have a
single copy nominated as the main development branch, but
this is a social difference rather than a technical one.

Both systems have advantages and disadvantages. Some
of the advantages of distributed systems are:

 They provide a full backup of the codebase and change
history with each branch, and there are many branches.

 It’s easier to work without a network connection, because
you can commit changes to your own local repository.

 Collaborating directly with
other developers is easier,
because you don’t have to go
through a central system.

 It’s easier to create and
destroy branches, and
therefore easier to conduct

experiments when developing!
 Some people see it as more empowering, encouraging new

people to get involved in a project.
 It’s possible to have multiple ‘central’ branches for different

uses (stable, development or release branches, for example).
 Committing, viewing history, and other similar operations

are fast, because there’s no need to access a central server.
 Merging is in general much easier.

Centralised systems also have advantages:
 It’s possible for a single person or entity to keep control of

the whole history and project access (this can obviously be
seen as an advantage in some circumstances and a
disadvantage in others!).

 A ‘master version’ of the code is kept centrally, rather than
having multiple competing versions.

 The central server can be explicitly designed and set up to
be fault-tolerant, rather than relying on lots of people’s
personal machines.

In short, both types of versioning methods have their
advantages, although distributed systems are becoming
increasingly popular these days.

 Bazaar 1.13.1
 Git 1.6.2.4
 Subversion 1.6.1

LXF120.vcs 52 8/5/09 6:13:12 pm

Version control systems

www.tuxradar.com July 2009 LXF120 53

 Getting a diff
from Bazaar and
checking the
repository status.

Distributed, but designed to support more centralised workflows as well.

Bazaar

Other contenders
Perforce Popular setup using a
centralised client–server model.
Perforce is under active development,
but the downside is that it’s proprietary:
it’s free for up to two users or for OSS
projects, but $900 per seat otherwise.
CVS Released in 1986, this is just about
the oldest full version control system
around. It’s centralised, with some very
well-publicised drawbacks (such as the

high cost of branching/merging). It’s
still in use and still maintained, but new
features are no longer being added, and
for a new project you’d be better off
with another option.
Mercurial Another distributed system
in active development. It has a neat
patch queue system, and the command
line abbreviation is hg, which should
remind you of your chemistry lessons.

B
azaar (bzr on the command line) is a distributed
system that calls itself ‘version control for human
beings’. It aims to support a variety of types of

workflow, giving you significant control over the way you
choose to work and to use version control. It’s also possible to
use Bazaar with other version control systems, or with the
repositories from other systems (such as CVS or Subversion).

Bazaar can be used with either a distributed workflow
style, with small task branches for each new feature and
developers using a local mirror branch to send changes back
to the shared server; or with a more standard centralised
version control style where developers regularly commit
directly to the shared server. It also works well for personal
single-user projects. The declared aim of the Bazaar team is
that the software should fit the way you work, rather than you
having to mould your working style to the software.

One nice feature of Bazaar, especially when you’re working
on your own, is that (unlike with Subversion) you don’t have to
create a repository, import your files, and then check out a
working copy. You just work from within your project directory
and Bazaar does its tracked changing from there. Of course,
one downside to this is that it’s more complicated to back the
repositories up: you need to either keep all your projects as
subdirectories of one main directory, or make sure that all of
your directories are being backed up. (Which is not, of course,
such a bad idea anyway.) It does also mean that a slip with rm
-rf will take out your repository. This makes it much easier to
start a project: instead of having to import your code and then
check it out again, you can just
initialise a new project from
within your directory. You can
also use a separate repository
directory and check out a
branch from that repository, if
you prefer to work in that
slightly more centralised way. Repositories are easy to set up,
using the init-repo command.

Work offline
The distributed nature of Bazaar enables you to work and
commit changes without a net connection. You can do this
with centralised version control by having a local repository;
but that can cause problems when you want to merge back in
with the main repository. The way that Bazaar operates
makes this localised version control easy: you download from
a main project with the bzr branch command, which then
creates a local branch on your own machine for you. You can
work from this branch, or create further sub-branches as you
like, and commit as often as you like. You can merge changes
from the parent with bzr merge, and then when you’re happy
with your code, you can create a patch to send upstream with
the bzr send -o patchname.patch command. Whoever owns
the parent branch can merge the patch in or not as they
prefer (using the same commands as when merging a
branch). While in theory Bazaar enables you to operate
without a central project tree, most projects will maintain a
central tree and merge changes into that.

Bazaar’s merge algorithm supports merging multiple
branches, and will locate the most recent common ancester.
It can also weave branches together, and can deal with some
fairly complicated setups. However, it does require that the
branches being used have some common ancestor (unlike
Git, which will merge entirely unrelated trees).

Bazaar also supports cherrypicking, which is when you
merge some changes from a branch (say up to version 104,
or versions 105–7) but not all of them. You can also
temporarily shelve changes that you’re working on (take
them out of your working tree, to return it to an earlier state,
perhaps to make it easier apply a large upgrade/update from
the parent branch), and then unshelve them when you want
them back. This is useful when you’re working on multiple
patches, or when you want to assess other people’s patches.

As with Subversion, hooks
(scripts run before or after
particular actions) are
available.

Usefully for larger projects,
Bazaar can be linked in with
bugtracking solutions. By

using the --fixes notation, you can associate a bug number in
a particular bugtracking system (there’s support for Bugzilla,
Launchpad, Trac, and Roundup, among others). So this:
bzr commit --fixes project:23400 -m “Stores user birthdates

properly”

will add a link in the log to bug 23,400 in the Bugzilla tracker
for Project. (There’s support for easy configuration for
Bugzilla and Trac.)

“Bazaar enables you to
commit changes without
a net connection.”

 URL http://bazaar-vcs.org
 Licence GPL
 Used by MySQL, Gnash, Squid

LXF120.vcs 53 8/5/09 6:13:13 pm

 Setting up and importing into a repository. This directory already has a Git
repository, so all that information is also being imported.

Version control systems

54 LXF120 July 2009 www.linuxformat.com

Centralised system designed to fix some of the problems with CVS.

Subversion

Resources

 Bazaar
Bazaar in 5 minutes
http://doc.bazaar-vcs.org/
bzr.dev/en/mini-tutorial/
index.html
Guide to switching from
other VCS tools
http://bazaar-vcs.org/
BzrSwitching

 Git
Official Git tutorial
www.kernel.org/pub/
software/scm/git/docs/
gittutorial.html
SVN-to-Git crash course
http://git-scm.com/
course/svn.html

 Subversion
Version Control with
Subversion, an O’Reilly book
available for free online
http://svnbook.red-
bean.com

 General version control
Wikipedia article comparing
various systems
http://en.wikipedia.org/
wiki/Comparison_of_
revision_control_software
Email from Linus Torvalds
discussing the advantages of
a distributed system
http://lwn.net/
Articles/246381

“It’s relatively simple to
merge a branch back in
with a trunk.”

S
ubversion was designed as a successor to the
very popular CVS, fixing some of its most notable
problems or irritations in the process. It works on
a client–server model, as CVS does. Your central

repository can be local (accessed via file://) or remote
(accessed via http:// or https://, or via the custom
svn:// or svn+ssh:// protocol).

Unlike with Bazaar, you always have to set up a central
repository (whether locally or remotely) before you start; so
the process of getting your
files under version control is
slightly more effort. Once
they’re in there, you have to
check them back out again to
get a working copy

In terms of the change/
check/commit cycle (change the file, check for conflicts,
commit the change), the commands and basic operation are
much the same as with any other version control system. To
some extent, once you’ve got started with one system you
have a head start on all the others, as many of the commands
are similar.

Conflict resolution
If you encounter a conflict within Subversion, you have to

explicitly mark the conflict as ‘resolved’ before you
can commit the file. This can occasionally

seem like a nuisance, but it does reduce
the chances of a conflict being
accidentally committed. (Although you
can of course just remove the flag
without actually resolving the conflict!)

Repositories can be branched and
tagged, as they can in other systems,
and it is relatively simple to merge a
branch back in with the trunk. However,
merging multiple branches, or cross-

merging between branches, can be

difficult; this is something that distributed systems handle far
better than client–server systems.

You can also merge and separate whole repositories – the
admin tools available for SVN include svndumpfilter, which
enables you to filter out particular projects. In general,
however, Subversion isn’t designed for the same level of
branch management flexibility as distributed systems are.
There’s no integral command to take a patch file and merge
that into your tree; you have to use the standalone tool patch,
which can cause problems with deleted or merged files.

Tagged commits
Subversion has a system of properties whereby you can
attach versioned metadata to your files. You can set pretty
much any human-readable label you like to be a property: it’s
a neat way of maintaining extra data about your files.
$ svn propset test “test property value” myfile.txt

$ svn proplist myfile.txt

Properties on ‘myfile.txt’

 test

$ svn propget test myfile.txt test property value

There are some special properties, beginning with an svn:
prefix, that do particular things, for example you can set the
svn:ignore property on specific files and they will thereafter
be ignored.

You can also, as with Bazaar and Git, set hooks: scripts to
be run when particular things happen. These are useful for
jobs such as checking that code will build correctly before a

commit is allowed, removing
trailing whitespace, changing
tabs to spaces (or vice versa),
and sending emails to your
fellow developers after you’ve
made a commit. (And, of
course, anything else you can

think of and have the ability to write a script for!)

 URL http://subversion.tigris.org
 Licence Apache Licence
 Used by KDE, Python, Ruby, Mono, Google Code.

LXF120.vcs 54 8/5/09 6:13:14 pm

Version control systems

www.tuxradar.com July 2009 LXF120 55

Verdict

All three of the version control systems
compared here are really good pieces of
software: what you use depends on what
your requirements are.

For an ultra-distributed setup, with
lots of developers working largely
independently, Git has major
advantages. If you’re working on your
own, using a distributed system can also
make sense, because it’s so easy to
create a new repository, even from an
existing directory. And the easier you
make it for yourself to use version
control, the more likely you are to do it.
However, make sure your backups are
happening regularly!

For a more centralised project,
Subversion has advantages – and there’s
plenty of support available for it. Bazaar
is good as a bridge of sorts between
centralised and distributed systems:
despite its being distributed, it’s easy to
use in a more centralised way if that
suits your project better.

Happily, the cost of experimenting
with all of these various version control
methods is low, especially for the
distributed systems – so it’s easy just
to pick one and start using version
control straight away, and then switch
systems if you want to try another one

at a later stage. LXF

Highly distributed and very fast.

Git

 Setting up a
directory as a
Git repository
is painless. The
lines in the
middle are the
status output.

“Git has strong support
for dealing with patches
that come in by email.”

G
it, like Bazaar, is another distributed version
control option, initially created by Linus Torvalds
for Linux kernel development.

One of the core features of Git is its support
for non-linear development processes: the idea that changes
will be repeatedly merged as they are passed around
reviewers (as happens with the Linux kernel development
process). In practice, this means that it’s very easy to merge
branches, and even to merge entirely unrelated, independent
branches or trees that have no common ancestor. This also
means that it’s possible to merge unversioned code or files
into an existing versioned tree: something which neither
Subversion nor Bazaar can handle straightforwardly. Git is
also designed to be fast, to deal with large projects quickly.

Git’s distributed nature means that, like Bazaar, each
working copy carries its own repository around with it (in the
.git subdirectory), rather than the repository living in a central
location as with SVN. Again, this means that it’s easy to get a
new project under version control – in the project directory,
execute git init; git add .; git commit – but it also means
that backing up is slightly more complicated. Again, if you
want to you can set up your own version of a locally
centralised repository.

It’s compatible…
Like Bazaar, Git works with Subversion: you can use a
Subversion repository directly with Git, using the git-svn
commands. This can be massively useful if you just want to
try it out, or if you’re working
with a project that uses SVN
and doesn’t intend to change.

Although largely similar,
the commands are slightly
different in a couple of cases
from the ones used by SVN
and Bazaar. There are a couple of really neat changes: for
example, git diff automatically uses less as a pager rather
than you having to remember to run it through a pipe.

It also has an interesting security feature: the history is
stored in such a way that the name of a revision depends on
the history to that point. Once the revision is published, it
can’t be changed without the change being visible.

In practice, this means that revisions are identified with
SHA1 IDs: 160-bit hex numbers. The downside to this is that
it’s harder to use a revision number to identify a particular
revision to work with, since they’re long and complicated.
However, Git will autocomplete for you, and there’s always
cut and paste.

Tags in Git are extremely powerful. You can attach an
arbitrary description to the tag: in some cases, projects
store a whole release announcement as the description. The
name of the tagger is stored, and the tag can be PGP signed,
thus, again, confirming not only the person’s identity, but also
the validity of the revision, history and tree through the
revision ID system.

Unlike Subversion, when you merge branches, the full
history of both branches is preserved, and branches can be

repeatedly merged. Git really does put a big priority on
flexibility and the ability to merge repeatedly and from
multiple directions. As well as dealing well with patches
(changesets), it also has strong support for applying patches
that come in by email. You can directly feed in a mailbox with
patch emails and it will grab the patches and apply them.
There’s also the StGIT tool for maintaining sets of patches.

Get your hooks in
As with both Bazaar and Subversion, Git has support for
hooks: scripts that are set to run before or after particular

events (eg checking for trailing
whitespace before running a
commit and exiting if any is
found; or sending an email
after a commit).

One slight problem Git
does have is an inefficient

use of space: each new object is stored as a separate file.
To get around this, files are intermittently ‘packed’ together
to save space.

 URL http://git-scm.com
 Licence GPL
 Used by the Linux kernel, Gnome, Perl, X.org, VLC, Android

LXF120.vcs 55 8/5/09 6:13:14 pm

