
Interview Benoit Schillings

Check it out, KDE fans: we’re not
biased against you! Benoit
Schillings is the Chief Technologist
at Qt Software. It’s up to him what
features should and shouldn’t be
make it into Qt, and hence, KDE. We
questioned him about Qt, why it’s

so darn hard to program in and why the Greenphone
could never make or receive a single a phone call.

Linux Format: What is your role at Qt software exactly?
Benoit Schillings: My role is chief technologist, which is
always interesting because my job is to be right about what
the technology will be like in the future – that’s probably the
best way I can describe it. You figure out what is going to be
the best way in two years to get the partners, device
manufacturers, and so on happy with our solution. So we’re
spending a lot of time with customers, spending quite a lot of
time at events like this, spending time with developers to get
a picture of where we’re going to be in two years’ time.

LXF: And has that role changed much with the acquisition
by Nokia?
BS: It’s a bit early to say exactly how the role is going to
evolve. But I do find that Nokia is a company that really thinks
in the same kind of horizon – you have short-term, medium-
term and long-term horizons, and I do find that first of all they
know a lot of things and there are lots of very interesting
brain-teasers. What the role of Qt will be in the context of
Nokia is a very interesting question, so I’m having a blast.

LXF: So presumably it’s increasingly embedded?
BS: Not especially you know. I think that trying to split the
market between embedded and non-embedded is probably a
dangerous path. First of all because you see that capability or
architecture becoming more similar, partly because people
want to be able to take their skills and experience and apply
themselves across a range of devices.

People want to go and learn Qt and apply it to embedded,
to mobiles, to PCs, which is something that is quite
interesting for developers. They do not need to use as big a
part of their brain in order to be able to learn all those
different skills. The other aspect is that I think we get a bit

50 Linux Format April 2009

Our man at
Nokia

Interview

Amateur astronomer and KDE hacker
Graham Morrison meets amateur
astronomer and Qt hacker Benoit Schillings.

LXF117.iview 50 17/2/09 10:22:5 am

April 2009 Linux Format 51

 Benoit Schillings Interview

stuck adding devices in our life if they do not integrate
properly with what we already have. I mean, who wants
another system that has to be backed up? Who wants
another set of configuration tools? So I think that more and
more for an end user to have more devices in their life you
need to get those devices to have a lot of commonality, and
that’s the place where the cross-platform framework has a
very big role to play. Everybody complains about converging
but nobody does anything about it, and I think what is needed
is a cross-platform framework combined with standards.

LXF: It must be particularly challenging for a feature -rich
toolkit such as Qt though, maintaining performance on an
embedded system that you don’t have to worry about
necessarily on the desktop.
BS: Yes, we always have to be careful. It’s very easy to go
overboard. If you look at embedded devices there are always
certain things that go with the embedded device: the screen
is much smaller, and if you look at graphical operations quite
a lot of them are proportional to the size of the screen, so
there are some aspects that mitigate the difference. The
other aspect is that, yes, it is always possible with any
framework to do things that will not run properly on any
device. I think that what you want to provide is something
that makes experimentation easy.

One example if you look at rendering in Qt, you can decide
to turn anti-aliasing on or off. That’s just one very simple
example. If you have a higher-end system you may decide
that you want to get smoother font rendering at the cost of
more CPU cycles, and when you move to a low-power system
there are a number of such options that you can decide to
disable or enable. If you use images or bitmap graphics you
can bitmap to use a low-resolution version of you application
if you need to use less power. So I think the abstraction of Qt
makes it easy to grow and be able to modify what your
application does given the
capability of the device.

LXF: I did have a
Greenphone you know.
Which I couldn’t make
calls or receive calls on.
BS: Really? You didn’t
modify the code so that it would work? That was the whole
point of the Greenphone!

LXF: I did write some user-level apps for it, and I did a
tutorial on coding for it. It was on the Qt server, the Qt side
of things, but I couldn’t get involved in the kernel or
anything too technical like that.
BS: That’s the difficulty. Just putting code in open source
doesn’t ensure that people will really be able to contribute.
There needs to be some sort of evolution in the way that we
think about open source, so people can make contributions
without investing their whole lives into understanding a piece
of code.

LXF: That was one of my questions actually. After so long,
why hasn’t programming got any easier?
BS: I think there’s something inherently difficult in
programming, which is that when you use most programming
languages, if you make one mistake the application dies. It’s a
single-point-of-failure type process, which is not very
forgiving. Programming languages have not evolved much
into helping you avoid this single point of failure.

LXF: The logic exists in your head, and transcribing that
into a program is difficult and can be verbose. I find that,
especially with Qt, when you’re continually abstracting
classes, at least when you don’t want to spend all day
doing it and maybe only do a bit at the weekend, it’s very
difficult to stay on top of it. It’s fine once you’ve learned
the whole kit and perhaps you’re getting paid to do it.
BS: I wouldn’t say I’m a great Qt programmer because that’s
not where I spend most of my time, but I think that what I find
in Qt compared with other platforms I’ve used in the past is
that there are different levels of abstraction that you can use

to program in Qt.
I think what we tried to

do with Qt is we tried to get
an initial approach that was
simple enough but at the
same time has some depth,
and we find that the style
and how people implement

their application can vary quite a bit, depending on their
mental patterns I guess, and their experience or the time they
have to spare.

LXF: How would you recommend someone start with Qt?
BS: I think that the best way to learn Qt is to go, take some of
the existing applications and just mess around. We do have a
number of tutorials, but I always take the view – and this is
true for learning a programming language or a programming
framework – that the best thing is to take some existing
application and mess around with it, so you can see how
things have been done in the past.

Very often when I’m stuck on a programming problem
with Qt I must admit that instead of going to the
documentation the first thing I do is to look for a piece of
code that performs the function that I need, and I can see:
“OK, that’s how it’s done”. So I think looking at concrete
examples is often the best way to learn a system. In the case
of Qt there’s so much code available on the net that between
what we provide with the Qt environment and and what there
is on Google, you can find so many examples, and that’s a
very good way to learn. LXF

 As well as a stint developing Macintosh software, Benoit Schillings was one of
the first full-time developers of BeOS, today kept alive by the Haiku project.

“My job is to be right
about what technology
will be like in the future.”

LXF117.iview 51 17/2/09 10:22:6 am

