
94 Linux Format February 2008

Tutorial Flash cards

Last month Part two: creating GUI-like alternatives for common admin utilities.

Code Project: Fla

Code Project Learn new skills by
building practical mini-programs

PART 3 Improve your programming skills and learn a foreign language with the
help of Mike Saunders and your very own flash card testing tool...

it for any language, or indeed for anything else you want to learn!

You could even set it up to display the name of an animal, having

the program test you on its species.

New Python skills
For last month’s project (config tools) we used Python, an easy-

to-grasp and highly readable programming language. Don’t worry

if you haven’t got the issue or have never written Python code

before, though – it’s very simple to understand. If you’ve dabbled

in any programming language before, you’ll have no problem

working with the code.

Our flash card app will need to read text files and generate

random numbers. Opening files in Python is a doddle: create a

new text file called foo.txt, tap a few words into it (one per line),

and save it in your home directory. Now create a file called test.py,

also in your home directory, with the following contents:

file = open(‘foo.txt’, ‘r’)

print file.readlines()

To run this Python script, start a terminal and enter:

python test.py

This code opens foo.txt (‘r’ for read-only) and associates the

contents with a new object called file.

In the second line of code, we call readlines() on our file object,

which scans through foo.txt and stores each line in an array. So by

printing it to the screen, we see:

[‘hello\n’, ‘banana\n’, ‘cupcake\n’]

Of course, this will vary depending on the words you entered in

foo.txt. But it demonstrates how Python retrieves text from a file,

storing each line as a separate array element. That’s all well and

good, but what if we want to display the text file normally?

file = open(‘foo.txt’, ‘r’)

for line in file:

 print line

This prints out all of the lines in foo.txt. Note that indentation is

essential in Python – the tab before print line shows that it’s code

to be executed in the for loop. That for loop essentially says: for

every line in the file we opened, print said line until the file ends.

So, we can now retrieve text from files and use word lists

for our flash cards. But there’s something else we need to do:

our program needs to display a list of possible answers when

displaying a word. After all, it’d be rather pointless if answer

number one was always correct! So in our program, we’re going

to display three possible answers for the displayed word, one of

which will be correct. Here’s how to get random numbers:

import random

a = random.randint(1, 5)

b = random.randint(30, 100)

print a, b

The first line tells Python that we want to use its random

number facilities. After that we create two variables, a and b,

O
ne of the reasons we love computers is their ability to just

work. Sure, hardware can break down and programs can

have bugs, but when everything’s running smoothly your

data won’t magically disappear. If you download, say, a Norwegian

dictionary, your machine will store it for later retrieval – without

argument. Your PC won’t get bored and try to learn another

language, nor will it have a few too many drinks and forget the

data it had yesterday. It won’t get into an argument with a lady

PC and destroy its files out of jealousy. On a solid system, the

data is always there.

Here in humanland, though, we’re engaged in a constant

battle with the foibles and quirks of our brains. We forget stuff, we

change our minds – above all, we wish our brains were more like

trusty RAM banks than fussy blobs of organic gloop. This is most

evident when learning a foreign language: a computer can store

millions of words and never ‘forget’ them, whereas we struggle to

remember the German word for ‘meeting’ even though we used it

yesterday. Thanks, brain.

So in this month’s coding project, we’re going to create a flash

card program to help you remember foreign words. It displays an

English word and asks you to choose its German equivalent from

a list of three randomly chosen options, keeping a score as you

progress. But it’s not just limited to German – you’ll be able to use

Mike Saunders

hacks anything
that carries
electrons, and is
proud of version 1.1
of MikeOS, his very
own operating
system written in
x86 assembly
language: http://
mikeos.sf.net

Our
expert

LXF102.tut_programming Sec2:94 11/12/07 13:24:43

Flash cards Tutorial

February 2008 Linux Format 95

If you missed last issue: Call 0870 837 4773 or +44 1858 438795.

Flash cards Tutorial

 sh cards
and give them random values via Python’s random.randint()

routine. We specify a range for the values – for variable a, the

number will be between one and five (inclusive). For b, it will be

between 30 and 100. Easy!

Bring on flashcard.py 1.0
Let’s get cracking with the program. We’ll need two text files, one

containing English words and one containing the corresponding

German words. (Or in file one, you could have country names, and

in file two you could have capital cities, for instance.) The most

important thing is that both files have the same number of lines

and the words match up in each. If you’re using capital cities, and

line seven in file one is ‘Japan’, line seven in file two must be ‘Tokyo’.

Otherwise the answers won’t match up!

So, create two text files in your home directory and enter ten

words in each, one per line. For our example, file one is called

english.txt and contains ‘thanks, good, please’ etc; file two is

called german.txt and contains ‘danke, gut, bitte’ etc. Now you

need the Python code to go alongside these text files in your home

directory – here’s the listing. You can get this from our DVD as

flashcard.py in the Magazine/CodeProject section, but for now

just read it through...

import os, random

count = 0

score = 0

file1 = open(‘english.txt’, ‘r’)

file2 = open(‘german.txt’, ‘r’)

f1content = file1.readlines()

f2content = file2.readlines()

while count < 10:

 os.system(‘clear’)

 wordnum = random.randint(0, len(f1content)-1)

 print ‘Word:’, f1content[wordnum], ‘’

 options = [random.randint(0, len(f2content)-1),

 random.randint(0, len(f2content)-1),

 random.randint(0, len(f2content)-1)]

 options[random.randint(0, 2)] = wordnum

 print ‘1 -’, f2content[options[0]],

 print ‘2 -’, f2content[options[1]],

 print ‘3 -’, f2content[options[2]],

 answer = input(‘\nYour choice: ‘)

 if options[answer-1] == wordnum:

 raw_input(‘\nCorrect! Hit enter...’)

 score = score + 1

 else:

 raw_input(‘\nWrong! Hit enter...’)

 count = count + 1

print ‘\nYour score is:’, score

With flashcard.py, english.txt and german.txt in your home

directory, open up a terminal and enter python flashcard.py.

You’ll see that the program displays an English word and then

three possible German equivalents beneath. These equivalents

are numbered, so if you think 3 is the right answer, just press 3

and hit Enter. Then the program will tell you whether you got it

right or wrong – it does this for ten questions.

Let’s look at the code in a bit more depth. We start off with an

import line, which tells Python which facilities we’re going to use.

In this case, we need to call an OS function (to clear the screen)

and generate random numbers. Then we set up two variables,

count and score – the first is used to show ten questions, and the

second stores how many you’ve got right. Then we have:

file1 = open(‘english.txt’, ‘r’)

file2 = open(‘german.txt’, ‘r’)

f1content = file1.readlines()

f2content = file2.readlines()

Here we open two files, assigning them to two variables called

file1 and file2. These variables are like handles for the files – they

represent the files stored in memory. But we don’t want just

the raw files; we want their contents, so the second two lines in

this code chunk grab the actual text data into two arrays called

f1content and f2content. Now we have a list of English words in

f1content and a list of German words in f2content. Next, we start

our main program loop:

 The first

incarnation of our

flash card program

is a simple text-

based affair.

LXF102.tut_programming Sec2:95 11/12/07 13:24:46

96 Linux Format February 2008

Tutorial Flash cardsTutorial Flash cards

may contain ‘Nepal, Canada, Finland...’ and file2.txt would have

‘nepalflag.png, canadaflag.png, finlandflag.png...’ and so on. We get

the list of words from the file1, and a list of corresponding pictures

to display from file2.

The code for this is a bit longer than before, and to avoid

wasting space with setup bits we’ll just include the main chunk

here. Still, this is the majority of the code, and it should show you

how a graphical version works. We have the full code listing – with

lots of comments (denoted by # marks) – on our DVD in the

Magazine/CodeProject/Graphical section.

Note that you need the PyGame library installed before you

run it: most distros have this in their package repositories (search

your package manager), but if not you can get the source in our

DVD’s Development section.

Here’s the main chunk of code that we’re using. There’s

some new stuff in here, but in typical Python fashion, it’s largely

self-explanatory – open an image file, draw it to the screen at a

specified location, and so forth.

init()

screen = display.set_mode((640, 480))

display.set_caption(‘Flashcard’)

font = font.Font(None, 48)

while count < 10:

 screen.fill(0)

 wordnum = random.randint(0, len(f2content)-1)

 mainpic = image.load(f2content[wordnum].rstrip(‘\n’))

 screen.blit(mainpic, (255, 50))

 options = [random.randint(0, len(f1content)-1),

 random.randint(0, len(f1content)-1),

 random.randint(0, len(f1content)-1)]

 options[random.randint(0, 2)] = wordnum

 text1 = font.render(‘1 - ‘ + f1content[options[0]].rstrip(‘\n’),

 True, (255, 255, 255))

 text2 = font.render(‘2 - ‘ + f1content[options[1]].rstrip(‘\n’),

 True, (255, 255, 255))

while count < 10:

 os.system(‘clear’)

 wordnum = random.randint(0, len(f1content)-1)

 print ‘Word:’, f1content[wordnum], ‘’

We want to ask ten questions, so we execute all the indented code

ten times (the count variable is incremented each time). The

first line of this loop clears the screen by calling the normal /usr/

bin/clear tool, and then we get a random word to display. We’re

saying: wordnum needs to be a random number representing a

line in the word files, so give me a number between zero and the

length of the file (in lines). Even though the word files may have

line numbers from one to ten, arrays start at zero, hence why we

get a random number between zero and file-lines minus one. So,

line one in f1content (english.txt) is actually the zero-th part of

the array, and line ten is the ninth bit. Then we display that word

from the english.txt file.

options = [random.randint(0, len(f2content)-1),

 random.randint(0, len(f2content)-1),

 random.randint(0, len(f2content)-1)]

options[random.randint(0, 2)] = wordnum

Next, we create an array of three possible answer numbers called

options. We set each answer to a random number, limited to the

maximum number of lines in f2content (german.txt). We now

have three random German words – but hang on, one of them

needs to be correct, right? Otherwise we could have three totally

wrong answers! So we choose one of our options answers to

be wordnum – that is, the right one. And instead of the correct

answer always being, say, number one, we position it at random in

the three-choice list of possible answers.

From here, the remainder of the code is very easy to

understand. It prints the three possible answers to the screen,

then gets a

response from the

user – ie entering

1, 2 or 3. When

the user enters an

answer, we check to

see if it corresponds

with the correct word. So, if the English word is ‘thanks’ and option

number two is ‘danke’, when the user enters ‘2’ our program says:

Ah! Option two is the seventh word in the German file. And the

original wordnum answer was also seven, so that’s correct! The

words match. Bingo.

A pictorial version
We’ve now got a text-based flash card tool, which is great for

many purposes, but how about a graphical version? You may want

something that shows a picture of an animal, and gives three

possible names – ideal for kids. Or perhaps you want to brush up

on national flags, and that’s exactly what we’re going to do here.

Like before, however, this program can be morphed into anything

that involves words and pictures: foodstuffs and their names in

Spanish, sitcom star photos and their screen names...

For this, we need to venture beyond the command line and

use a graphical layer. Thankfully, we have the perfect choice for

our Python adventures: PyGame, a library that links Python with

the popular SDL media layer. PyGame lets us create windows and

display proper images on the screen, all with minimum hassle.

Indeed, much of our existing code can remain the same – we just

need to make it show pictures instead of plain text.

Whereas our first version of flashcard.py used two text files

with corresponding words, this graphical incarnation will use a list

of words and a list of associated pictures. So, for flags, file1.txt

If you’re

experimenting with

some Python code

and your program

gets stuck in a loop,

you can kill it from

the terminal with

Ctrl+C. You may

need to press this a

couple of times,

especially if your

program is waiting

for some user input.

If your program still

won’t quit, enter ps

ax in a terminal, find

the Python process

number for your

script, and enter kill

-9 <number>.

That’s the ultimate

program halting

command.

Quick
tip

“This program can be
morphed to involve
words and pictures.”

LXF102.tut_programming Sec2:96 11/12/07 13:24:47

Flash cards Tutorial

February 2008 Linux Format 97

Flash cards Tutorial

 With Python and PyGame, we can now create graphical tests like this one.

 text3 = font.render(‘3 - ‘ + f1content[options[2]].rstrip(‘\n’),

 True, (255, 255, 255))

 screen.blit(text1, (30, 200))

 screen.blit(text2, (30, 300))

 screen.blit(text3, (30, 400))

 display.update()

The first four code lines tell PyGame to set up the screen. We

initialise PyGame, then tell it to create a new 640x480 pixel

window, setting the window title bar to some appropriate text.

Then we create a new font: we create an object called font using

PyGame’s own font system, and with ‘None’ we say: it doesn’t

matter what font we use – just choose the system default. We

also want a 48-point font size.

Then the main loop kicks in, running ten times for ten

questions. screen.fill(0) simply fills the screen with the zero-th

colour, which is black – it just clears the screen for each question.

Next we choose the line for the random word that’ll be the

answer, as in our text-based version, and then we have:

mainpic = image.load(f2content[wordnum].rstrip(‘\n’))

This is quite a big instruction, so let’s parse it. We’re creating a

new PyGame picture object called mainpic for drawing to the

screen. However, we need to load the picture from somewhere –

and we need it to be the correct answer picture. You’ll remember

that wordnum now contains the file line number of the correct

answer – we’ve told Python to choose it at random.

Like before, in the full code we load two text files into

f1content and f2content. f1content contains the word list – in

Do more with PyGame
Our second flash card program merely scratches the surface of

what’s possible with PyGame (www.pygame.org). This library

provides a wealth of facilities for loading images, moving sprites

around, handling keyboard/mouse input and playing back sound

effects. It’s a popular choice for open source game programmers

– see www.pygame.org/tags/arcade for examples of what can

be achieved.

Best of all, PyGame has copious documentation, including

tutorials for complete beginners and a detailed API reference. At

www.pygame.org/docs you’ll find getting-started tutorials on

initialising PyGame, moving sprites and using pixel effects.

Next month Jaded? Despondant? Fall in love with programming for St Valentine’s Day!

our case, ‘Nepal, Canada, Finland...’. f2content contains a list of

corresponding image file names: ‘nepalflag.png, canadaflag.png,

finlandflag.png...’. Our wordnum points to the word in f1content,

and also to the associated image filename in f2content. If

wordnum is 2, it may point to ‘Nepal’ in f1content and ‘nepal.

png’ in f2content – this is why your files should match up!

So, we load our picture from the correct filename in

f2content, stripping off the newline character with rstrip –

otherwise PyGame gets confused! Next up, we choose one of the

three options to be the correct one, as before. Then we create

three text snippets to display to the screen. Here’s the first:

text1 = font.render(‘1 - ‘ + f1content[options[0]].rstrip(‘\n’),

 True, (255, 255, 255))

This creates a new image called text1, containing the first

random option from our f1content list of words. The True

means that we want this text to be anti-aliased, and the (255,

255, 255) is the text colour in red, green, blue format. So, our

text here is white. We do this for the other two options, then ‘blit’

(draw) the text to the screen, and update the display to make

sure everything is shown.

The remainder of the code, which you can read with full

comments on our DVD, handles user input at this point. We

check to see if the user has pressed 1, 2 or 3, and react

accordingly – print ‘Correct!’ and update the score, or print

‘Wrong!’. Then we wait for Enter to be pressed and restart the loop.

Finishing off
Hopefully this has inspired you to delve deeper with your flash

card project, perhaps expanding it to include five possible

options instead of three. Or maybe you could capture the system

time at the start of the test, and compare it to the system time at

the end, thereby rating how quickly the test was completed!

There’s lots to do with these programs, and if you come up

with something cool, please do let us know and we’ll put it on our

DVD. If you have any questions about this tutorial, hop over to

the Programming section of our forums at www.linuxformat.

co.uk/forums. Have fun! LXF

 PyGame isn’t just limited to video games – you can use it

to create media players too.

LXF102.tut_programming Sec2:97 11/12/07 13:24:49

